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1 The Framework of Set Theory

In this course, we develop the theory of sets, built up from the empty set. We will
consider themes such as

e How do transfinite limit processes work?
e How can arithmetic be generalized to the infinite?
e What can we say about the sizes of infinite sets, for example the set of real numbers?

e Infinite combinatorics: What kinds of uncountable trees and other uncountable
structures exist?

Results in infinite combinatorics have consequences in many fields of mathematics. All (or
most) mathematical objects, for example real functions, groups, fields, topological spaces,
Banach spaces, ultrafilters, can be formalized as sets, therefore set theory is a framework
for mathematics. The formalization is straightforward (but sometimes tedious).

Example 1.0.1. 1. A natural number is of the form 0 := 0 or n+ 1 := n U {n} for
some natural number n.

2. An ordered pair (z,y) is the set {{z},{z,y}}.

3. A rational number is an equivalence class of an ordered triple of natural numbers,

m—n
where (m,n, k) represents o

4. A real number r is the left half of a Dedekind cut in Q, i.e. the set L = {q € Q|¢ <
r}.

5. A function f:R — R is the set of pairs (z, f(x)) for z € R.

1.1 The Language of Set Theory

In the beginning, we will try to be as precise and formal as possible. In other fields
of mathematics, this is usually not necessary in this form. However in set theory, when
considering very large sets and collections of sets, it is easy to reach a contradiction, if one
is not careful about the rules for the formation of sets, as in Russell’s paradox. Therefore
we try to be as precise as possible to ensure that every statement can be translated into
a formal statement in the language of set theory.

Definition 1.1.1. 1. The formal language of set theory is L = {€}.

2. A set theoretic formula or €-formula is a first order statement in the language of set
theory using the logical symbols A, V,—,—, 3V, =, (,), variables and the relation
symbol €, for example “Vzdy x € y”.
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We will not actually work in this formal language, but introduce many definitions and
abbreviations, in order to write statements such as sup,_, f(x) = f(y) or e = —1.

Another reason to ensure that every result is proved from certain axioms is that re-
search in set theory is mainly concerned with models of set theory, i.e. models of a formal
theory, just as group theory is concerned with the formal theory of groups, and for this
reason the formalization is necessary.

1.2 Russell’s Paradox

In the early days of set theory, people tried to describe informally what is a set. Georg
CANTOR characterises sets as follows:

Unter einer ,Menge* verstehen wir jede Zusammenfassung M von bestimm-
ten wohlunterschiedenen Objecten m unserer Anschauung oder unseres Den-
kens (welche die ,Elemente’ von M genannt werden) zu einem Ganzen.[1, p.
481]

This roughly translates to:

By the notion of a ‘set” we mean any collection M of certain distinct objects
m of our experience or intellect (which are called the ‘elements’ of M) into a
whole.

Felix HAUSDORFF characterises sets as follows:

FEine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h.
zu einem neuen Ding.[4, p. 1]

This roughly translates to:
A set is a collection of things into a whole, i.e. a new thing.
If we are not careful, these definitions of sets lead to the following contradiction.

Russell’s paradox. Suppose that there is a set x which consists of exactly the sets y
with y ¢ y. If z € x, then = ¢ z, but if x ¢ z, then x € x, contradiction.

To avoid this problem, it is necessary to formulate axioms for the formation of sets, which
we introduce in the following. Once an axiom or axiom scheme is introduced, it is used
without comment in the following proofs.

1.3 The Set Existence Axiom

The Set Existence Axiom states the existence of a set, in particular of an empty set.

Axiom (Set Existence).
JVyy ¢ x.
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1.4 The Extensionality Axiom

The Extensionality axiom states that every set is determined by its elements.

Axiom (Extensionality).
Vava' (Vy(y ez <>y € 2') — . =2').

Lemma 1.4.1. VaV2/(Vyy ¢ x AVyy ¢ 2') — x = 2') — The empty set is uniquely
determined.

Proof. It Vyy ¢ x,Vyy ¢ o/, thenn = and 2’ have the same elements. So, z = 2/, by
Extensionality. O

1.5 Classes

We need a notation for the universe of sets which is itself not a set. It is formalised as a
class.

Definition 1.5.1. A class or class term A = {x|p(z, S0, ..., Sp)} is given by a first-order
formula ¢ and sets sq, ..., Sp.

Definition 1.5.2. Suppose that A = {z|p(z, so,...,Sn)} is a class and s is a set.
1. se Aif ¢(s,so,...,sy) holds.
2. Let s=AifVresre ANVz € Az € s.
Definition 1.5.3. Suppose that A, B are classes.
1. ACBifVre Az € B.
2. A=Bif AC Band B C A.

Lemma 1.5.4. If A, B are classes and s,t are sets with A = s and B =t, then s =t if
and only if A= B.

Proof. By the Extensionality Axiom. ]
We will identify a class A with a set s if A = s.
Definition 1.5.5. 1. 0 := {z|x # =} “the empty class/set”.
2. V :={x|z = x} “the universe of sets”.
3. {zo,...,zn} ={xlz =20 V... V& =12,}.
Lemma 1.5.6. ) € V.. The empty class is a set.
Proof. By the Set Existence Axiom there isaset s=0. So) =se V. O

Definition 1.5.7. A class A is called a proper class if there is no set s with A = s.
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Definition 1.5.8. Suppose that A, B, Ay, ..., A, are classes.
1. AgU...UA, :={zlx € AgV...Vz € A,}.
2. AgN...NA, :={zlr € AgN...Nz € A,}.
3. A\ B :={z|lxr € ANz ¢ B}.
4. JA=Ueaz:={y|3r € Ay € x}.
5. NA=ear :={y|Ve € Ay € x}.
Lemma 1.5.9. | J{z,y} =z Uy.

Proof. “C”: Suppose u € |J{z,y}. Then there is some v € {z,y} with x € v. We can
assume that v =2z,s0 u € x. Sou € x U y.

“2™ Suppose that u € x Uy. Suppose that u € z. So, u € |J{z,y}.
O]

Every statement about classes can be translated into a statement in the language of
set theory. Note that we don’t quantify over classes, i.e. we do not consider statements
of the form ’there is a class A with certain property’, since we cannot quantify over
formulas, only over sets.

1.6 The Pairing Axiom

The Pairing axiom states that for any sets s,t, there is a set which has exactly the
elements s,t, i.e. {s,t} € V.

Axiom (Pairing).
VaVydzVu(u € z < (u=x Vu=y)).

Definition 1.6.1. Suppose that s,t,sq, ..., Syt1 are sets.
1. (s,t) := {{s},{s,t}} ordered pair.
2. (80y--y8n+1) = ((S05---48n),Sp+1) (ordered) tuple.
Lemma 1.6.2. 1. VaVy3zz = (x,y).
2. Vxg... Va,3z 2 = (zg,...,2Tn).

Proof. 1. Suppose that s,t are sets. By the Pairing Axiom, there are sets w,v with
u = {z} and v = {x,y}. Again, by the Pairing Axiom, there is a set z with

z ={u,v} = (s,t).

2. By induction on n.
O

The definition of the ordered pair satisfies the fundamental propoerty of ordered pairs:
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Lemma 1.6.3.

Ve, y, 2’y ((z,y) = (@, y) = (= 2" Ay =1))).
Proof. Suppose that (x,y) = (2/,9').
Case 1. z =y. Then{z} = {z,y} and (z,y) = {{z}}. Then {{z'},{2',y'}} = («/,¢) =
(x,y) ={{z}}. Thena' =y, x=2",y=1y'.

Case 2. x© # y. Then, by Extensionality, ¥’ = v or 2’ = x = y. Since the latter case
leads to a contradiction, ' = x. Hence {x,y} = {z',y'} and since y #x =2",y =1y .

O
Definition 1.6.4. Suppose that Ay, ..., A, are classes.
Let Ag x ... x Ay :={(x0,...,zn)|z0 € Ao A ... Ny € Ap}.
1.7 Relations and Functions
The notion of an ordered pair allows us to define relations and functions.
Definition 1.7.1. 1. A class R is a (binary) relation (on a class A) if its elements

are indeed pairs in A x A. We also write xRy for (z,y) € R.

2. A relation F is a function or map if Va,y,y' (zFy AxFy — y =1y'). We also write
F(x) =y for xFy.

Definition 1.7.2. Suppose that R, S, A are classes.
1. dom(R) := {z|3Jy (z,y) € R}. “domain”
2. range(R) := {z|3y (y,x) € R}. “range”
3. field(R) := dom(R) Urange(R). “field”
4. RIA :={(z,y)|zRy N x € A} “restriction”
5. R[A] = R'A:={y|3z € A (z,y) € R}. “image”
6. R7YA] := {z|3y € A (z,y) € R}. “preimage”
7. SoR:={(z,2)|3y (z,y) € RA(y,z) € S}. “composition”
8. R~ = {(y,2)|(z,y) € R}.

Definition 1.7.3. Suppose that R is a relation.
1. R is called reflezive if Vo € field(R) (z,x) € R.
2. R is called irreflexive if Vo € field(R) (x,z) ¢ R.

3. R is called symmetric if Vz,y € field(R) ((z,y) € R <> (y,z) € R).
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4. R is called antisymmetric if Y,y € field(R) ((z,y) € RA (y,2) € R — z =y).
5. R is called connex or linear if Vz,y € field(R) (x =y V xRy V yRx).

6. R is called transitive if Vz,y, z € field(R) (xRy A yRz — xRz).

7. R is an equivalence relation if R is reflexive, symmetric and transitive.

8. If R is an equivalence relation and z € field(R), then [z]g := {y € field(R)|zRy}
the equivalence class of .

Definition 1.7.4. Suppose that R is a relation, A is a class.

1. Ris a partial order if R is reflexive, transitive and antisymmetric. We often denote
partial orders by the symbol ‘<.

2. R is a linear order if R is a partial order and R is linear.
3. R is a partial order on A if R is a partial order with field(R) = A.

4. R is a strict partial order if it R is irreflexive, transitive and antisymmetric. We
often denote strict orders by the symbol ‘<’.

5. R is a strict linear order if R is a strict partial order and R is linear.
Definition 1.7.5. Suppose that F' is a function, A, B are classes.
1. Fis a function from A to B(F : A — B) if dom(F) = A and range(F') C B.

2. F is called a partial function from A to B (F : A — B) if dom(F) C A and
range(F') C B.

3. F: A— B is called surjective or onto if range(F') = B.
4. F: A — B is called injective or one-to-one if Vo, o' € A (x # 2/ — F(z) # F(2')).

5. 4B :={f|f: A— B}.

1.8 The Union Axiom

The Union Axiom states that the union (Js of a set s is again a set.

Axiom (Union).
VedyVz(z € y «» Ju(u € x A z € u)).

Lemma 1.8.1. Vzq...Vz, {zo,...,2,} € V.

Proof. By Pairing, this holds for n = 0, 1. Suppose that this holds for some n > 1. Then
{zo,....zp41} = U {{®o0,...,2n}, {zn41}} is a set by Pairing and Union. O

Page 8 of 104

Lecture 2
8th Oct



Set Theory, Lecture Notes Bonn University, Winter 2014 /2015
Contents 1. The Framework of Set Theory

1.9 The Infinity Axiom

The Infinity Axiom states that there is an infinite set.
Definition 1.9.1. 1. For s a set, let s + 1 := sU {s}.
2. A set s is called inductive if ) € s and Va(x € s >z + 1 € s).
More precisely, the Infinity Axiom states the existence of an inductive set.

Axiom (Infinity).
@ eyAVe(zrey > x+1e€y)).

1.10 The Foundation Axiom

The Foundation Axiom states that every set has an €-minimal element.

Axiom (Foundation).
Vydz(z e y Ax Ny =10).

Lemma 1.10.1. There are no €-cycles, i.e. there are no sets xq,...,xy, With xg € r1 €
.. E Ty €20.
Proof. Suppose there is an €-chain x, ..., z, as described above. Let y = {zg,...,xn}.

By Foundation, y has an €-minimal element x;. If £ =0, z,, € x; Ny which contradicts
the Foundation Axiom. If 1 < k < n, xx_1 € xxNy which also contradicts the Foundation
Axiom. Hence, there is no €-chain. O

The Foundation Axiom implies that the universe of sets is built up in a cumulative
hierarchy.

The Foundation axiom is no restriction in the following sense. Given a model of the
remaining axioms and schemes, one can form the class of well-founded sets z, i.e. such
that x is an element of a transitive set y such that (y, €) is well-founded. One can show
that this class is a model of all axioms and schemes including the Foundation Axiom.

1.11 The Separation Scheme

We consider schemes which generate infinitely many formulas.
The Separation Scheme states that any subclass of a set is again a set.

Axiom Scheme (Separation).
VaVag... Vo, yVz(z €y < z € 2 AN p(2,20,...,2,)).

Let A be the class definied by ¢. £ N A is then a set.
Unrestricted Separation leads to Russell’s paradox. This implies that the universe of sets
is itself not a set.

Lemma 1.11.1. V ¢ V.
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Proof. Suppose that V' is a set. Then {x|z ¢ z} is a set by Separation. By Russell’s
paradox, this is not a set, contradiction. ]

Lemma 1.11.2. There is a C-least inductive set.

Proof. By Infinity, there is an inductive set x.

Then y = {u|lu € x A Vu(inductive(v) — u € v)} is a set by Separation. This is the
intersection of all inductive sets. y is inductive, because ) € y and if w € y and z is
inductive, then we have w € z, so w+1 € z by the inductivity of z. Hence, w+1 € y. [

1.12 The Replacement Scheme

Axiom Scheme (Replacement).
If F is a function, Vo Flz| € V.

There are some redundancies within the axioms. The Seperation Scheme, for example,
follows from the Replacement Scheme and the Set Existence Axiom.

Lemma 1.12.1. All azxioms without the Separation Scheme, but with the Replacement
Scheme, already imply the Separation Scheme.

Proof. Suppose x is a set and A is a class. If ANz = (), then ANz is a set by the Set
Existence Axiom. If AN x # (), then there exists an ug € AN x. We define a function

u, ifueA

F:x—)ij(u):{uo fug A

Then F[z] = AUz is a set by the Replacement Scheme. O

1.13 The Axiom System of Zermelo-Fraenkel without the Power Set
Axiom

Definition 1.13.1. The axiom system ZF~ (Zermelo-Fraenkel set theory without the
Power Set Axiom) consists of the axioms and schemes:

e Set Existence
e Extensionality
e Pairing

e Union

e Infinity

e Foundation

e Separation Scheme
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e Replacement Scheme
Remark 1.13.2. There are some redundancies among the axioms.
e Set Existence is entailed by Infinity and Separation.
e Separation is entailed by Replacement and Set Existence.
e Pairing is also following from the other axioms (exercise).

Remark 1.13.3. 1. ZF~ is not finitely axiomatisable, in particular, the schemes can-
not be replaced by axioms.

2. If ZF~ is consistent, ZF~ is incomplete, i.e. there are €-sentences ¢ such that
neither ¢ nor = can be formally derived from ZF~ (Gddel Incompleteness Theor-
ems).

1.14 Induction and Recursion

Definition 1.14.1. Suppose that < is a relation.
1. If y is a set, let pred_(z) = {yly < z}.

2. < is (strongly) well-founded if for every set y,
(i) pred_(y) is a set (“strongly...”, “set-like”)
(i) if y Nfield(<) # 0, then there is an = € y which is <-minimal in y, meaning

there is no z € y with z < x.

3. < is a well-order if < is well-founded and a linear order. < is a well-order on a
class A if < is a well-order with field(<) = A, or < is the empty well-order and A
has at most one element.

Theorem 1.14.2 (Induction for sets). Suppose that < is a well-founded relation on a
set u, o(x,y) is an €-formula, and v is a set. If for all y € u:

(Vo <y p(a,v)) = ¢(y,v),
then p(z,v) holds for all x € u.

Proof. Let S := {y € u|=p(y,v)}. This is a set by Separation. Suppose that S # 0.
Since < is well-founded there is some y € S with pred_(y) NS # . Then ¢(y,v) holds,
contradiction. O

Theorem 1.14.3 (Recursion for sets). Suppose that < is a well-founded relation on a
set u. Suppose that G : u x V. — V (“recursion rule”). Then there is a unique function
fiu—V such that for all x € u:

f(z) = G(z, flpred_(z)).
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Proof. Before we may prove this, we need another definition.

Definition. If z € u, a function f is called a z-approximation if

1. z € dom(f) C u.
2. For all z € dom(f), pred_(x) C dom(f) and f(z) = G(z, flpred_(z)).

Claim 1. Suppose that z,72' € u, suppose that fisa z-approzimation,
g a 2’ -approximation. Let v = dom(f)Ndom(g). Then flv = glv.

Proof. We show that f(z) = g(z) for all x € v, by induction along (v, <).
Suppose that y € v and Vo <y f(x) = g(z). So f(z) = g(z) for all z € v. O

Claim 2. If z € u and there is a z-approximation,
then there is a C-least z-approrimation.

Proof. The intersection of all z-approximations works. ]
Claim 3. For every z € u, there is a z-approximation.

Proof. We prove this by induction along (u, <).
Suppose that for all < y there is an z-approximation. Let f, denote the unique C-
minimal z-approximation. Then f:=J, <y fz is a function by the first claim.

Moreover, x € dom(f) for every x < y and f is an z-approximation for all x € y. Let

fy=fu{(y,G(y, f))}. Then f, is a y-approximation. O
Let f. denote the unique C-minimal z-approximation for z € u. Then f = | seu f. is
a z-approximation for all z € u, so f is as required. ]

1.15 Ordinals

The notion of ordinals allows us to count beyond the natural numbers. We denote the
ordinal that corresponds to the set of natural numbers by w.

0 1 2 3 4 Wow w1 w2 w-24+1

Note that these ordinals are all countable. The sequence {w,w - 2,...} is a sequence of
so called limit ordinals.

Example 1.15.1. If C C R is closed, let C’ (“derivative of C”) denote the set of all
non-isolated points in C'. We iterate the derivative along a well-order, by taking the
intersection at limits:

cO=ccW=c,. .. c¥=cm.

neN
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This process terminates at the maximal closed D C C' with no isolated points, the
perfect kernel of C. Consider, for example, C' = {:U ERlz=0vVIneN\{0}z= %}
Then C" = {0} and C" = 0.

C: ——t % O ———— 0" =0
0 1 0

Definition 1.15.2. 1. A class A is called transitive if Vx € AVy € xy € A (or,
equivalently, r € yAy € A= x € A for all sets x,y.)

2. Sets z,y are called €-comparable if x € yory € x or x = y.

3. A set z is called an ordinal if x is transitive and (z, €) is a linear order.

4. If «, B are ordinals, let a < §if a € 5.

5. An ordinal of the form a 4+ 1 = a U {a} is a successor ordinal.

6. An ordinal « is called a limit ordinal if o # 0 and « is not a successor ordinal.
7. Let Ord denote the class of ordinals.

8. Let w denote the C-least inductive set.
We denote ordinals by Greek miniscules o, 3,7, ...

Lemma 1.15.3. 1. 0 € Ord and Vo € Ord o + 1 € Ord.
2. Ord is transitive.
3. All a, B € Ord are €-comparable.
4. Ord is a proper class.
5. If £ C Ord is a set, then supx := |z € Ord.

Proof. 1. 0 =0 € Ord, because () is trivially transitive and a linear order with €. We
have to show that for every a € Ord, the successor a + 1 is also transitive and
(a+1, €) is a linear order. To show that a+ 1 is transitive, suppose that § € a+1
and v € 8. Note that « +1 = aU{a}. If 8 € a, then 7 € «, by the transitivity of
a€Ord. If 8 =a, theny € f§=a C a+1. Thus, o+ 1 is transitive. (a+1,€)
is a linear order, because a + 1 = a U {a}. O

2. If « € B € Ord. We have a C 3, because [ is transitive. So («, €) is linear.
Suppose that 6 € v € a € 5. We have 6 € a VI = aV a € §. By Foundation,
d € a, since we would otherwise get an €-circle. O

Page 13 of 104



Set Theory, Lecture Notes Bonn University, Winter 2014 /2015
Contents 1. The Framework of Set Theory

3. Suppose that there is some ordinal o such that some [ is not €-comparable with
Q.

Suppose that ag € a + 1 is €-minimal (by Foundation) such that some § € Ord is

not €-comparable with ag.

Suppose that fy € f 4 1 is €-minimal such that «g, 8y are not €-comparable. We

claim that ag = 8y by mutual inclusion:

ag C Bp: Suppose that v € ag. Then v is €-comparable with 5y, by the minimality of
ap. If v = By then Fy € oy, contradiction. If 5y € =y, then By € «p, since « is
transitive, contradiction. Thus, v € By.

Bo C ag: Suppose that v € By. Then « is €-comparable with ag, by minimality of fp.
As in the proof of the previous claim, v € «y.

Hence, ag = By, contradiction. ]

4. Suppose that Ord is a set. As we have seen in 2. and 3., Ord is transitive and
forms a linear order with €. Thus, Ord € Ord, contradicting Foundation. This is

also known as the Burali-Forti paradox. O
5. Exercise. O
O

Lemma 1.15.4. 1. If0c€x CwandVn € xn+1 € x, then x = w (induction on
natural numbers).

2. w 1s the least limit ordinal.

Proof. 1. Since z is an inductive set, and w is the C-least inductive set, the claim
holds. O

2. Since wN Ord is inductive, w = {0,1,2,...} € Ord. Then (w, €) is linear. To show
that w is transitive, let * = {n € w|¥m € nm € w}. Since 0 € = and if n € z, then
n+ 1 € x, x is inductive, thus, x = w. Hence, w is transitive.

If w=a+1 for some a € Ord, then a € w, and therefore o 4+ 1 € w, contradicting
Foundation.

Claim. If a € w s a limit ordinal, then « is inductive.

Proof of the Claim. As an ordinal, « is a linear order. Suppose that § € «. If
a€fB+1,then a € € a, ora =0 € a, contradiction. If « = § + 1, this would
contradict the assumption that « is a limit ordinal. Therefore, 5+ 1 € a. O

Since w is the C-least inductive set, o = w, contradiction.

O]

Lemma 1.15.5. 1. Suppose that R is a well-founded relation, i.e. there is an R-
minimal element and for all x, predp(x) is a set. Suppose x is a set (note that
prede(z) = x).

Then there is a C-least y with x Cy and Vz € y predp(z) C y.
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2. If x is a set, there is a C-least set tc(x) (“transitive closure of x”) with x C y
such that y s transitive.

Proof. 1. Let

fO) =z, f(n+1)= f(n)u | predp(2),
zef(n)

by recursion along (w, <). The union in this equation is indeed a set: consider the
function
fn) =V,
z > predp(z).

By Replacement, {predp(z)|z € f(n)} is a set, and applying Union to this set
shows this claim.

Let
y=|J fn).
new
L]
2. Let R=€in 1. ]
]

Lemma 1.15.6. Suppose that R is a well-founded relation. Then any nonempty class A
has an R-minimal element.

Proof. Let x € A. By Lemma 1.15.5 applied to R[A and {z}, there is some y such that
r€yC Aand Vz € y predgis(2) Cy.

By assumption on R, y has an R-minimal element z.

If 2 is not R-minimal in A, then there is some 2’ € A with z’Rz. Then 2’ € y. This
contradicts the minimality of y. O

Theorem 1.15.7 (Induction for classes). Suppose that < is a well-founded relation on
a class A, p(z,y) a formula, v a set. If for ally € A

(Vz <y p(z,v)) = ¢(y,v)
then p(x,v) holds for all x € A.

Proof. Analogous to the proof of Theorem 1.14.2 (induction for sets), using Lemma 1.15.3
(properties of ordinals). O

Theorem 1.15.8 (Recursion for classes). Suppose that < is a well-founded relation on
a class A and G : A XV =V is a function (“recursion rule”).
Then there is a unique function F': A — V such that for all x € A

F(z) = G(z, Flpred(x)).
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Proof. Analogous to the proof of Theorem 1.14.3 (recursion for sets), using Theorem
1.15.7 (induction for classes). O

1.16 The Mostowski Collapse

Definition 1.16.1. A relation R on a class A is called extensional if for all z,y € A:

predg(z) = predg(y) = = =y.
For example, any linear order is extensional, while not all partial orders are extensional.

Theorem 1.16.2 (Mostowski’s isomorphism theorem). Suppose that < is a well-founded
extensional relation on a class A.

Then there is a unique transitive class B (“transitive collapse of (A,<)” or
“Mostowski collapse of (A,<)”) and a unique isomorphism

T =Ta<) : (A,<) = (B,€) (“collapsing map of (A,<)”). The inverse map = of
the transitive collapse is also called the monotone enumeration of A.

Proof. Let 7(y) g {m(z)|x < y} for y € A, by recursion along (A4, <).
Let B = 7[A].
Claim. 7 is injective.

Proof. Suppose that z is €-minimal such that there are x # y with 7(z) = 7(y) = 2.
Then pred_(x) # pred_(y). Suppose that u € pred_(x) \ pred_(y).

Since m(u) € w(z) = {7(v)jv < 2} = w(y) = {7(v)|v < y}, 7(u) = w(v) for some v < y.
Then u #< and 7m(u) = w(v) € z. This contradicts the minimality of z. O

Claim. 7 is an isomorphism.

proof. If x <y, then w(z) € w(y). If n(z) € n(y) = {7(2)|z < y}, then n(x) = 7(z) for
some z < y. Then z = z < y. O

This proves the existence of .
Claim. n[A] := B is transitive.

Proof. Suppose that z € y € B = w[A]. Then y = w(u) for some u € A, so y = w(u) =
{m(v)|v < u}. So xz € 7[A]. O

Claim. 7 is unique.

Proof. Suppose that p : (A,<) — (C,€) is another isomorphism, and C is transitive.
We prove this by induction that m(x) = p(z) for all z € A.

Suppose that m(z) = p(z) for all z < y € A.

Then 7m(y) = {n(z)|x < y} = {p(x)|z < y} C p(y). Since p is an isomorphism, equality
holds, {p(z)[z <y} = p(y). O

O]
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Lemma 1.16.3. The ordinals are exactly the transitive collapses of well-orders.

Proof. By Theorem thm:mostowski (Mostowski’s isomorphism theorem). O

Lemma 1.16.4. If (z,<), (y, <) are isomorphic well-orders, there is a unique isomorph-
ism f:(z, <) = (y,<).

Proof. f=m} )°T(,<)- By composition of unique isomorphism, the diagram commutes.

(y
(z,<) Hl_f (y,<)
E|!7r(m7<)t [EI!W@K)
(0,6) ——— (8:€)

1.17 Ordinal Arithmetic
Definition 1.17.1. For ordinals «, 8, we define o + 3, a - 8 by induction on .

I.a+0:=0,a+(Bf+1):=(a+p)+1=a+pU{a+ B}
For limit ordinals 3, a + 8 := sup, .g(a + 7).

2. a-0:=0,a-(B+1):=(a- )+
For limit ordinals 38, a - 8 := sup,g(c - 7).
Definition 1.17.2. The lexicographical order on Ord? := Ord x Ord is defined by
(, B) <iex (7,0) if o <y or (a« =+ and B < 9).
Exercise 1.17.3. (Ord?, <io) is a linear order.

Lemma 1.17.4. Suppose that o, f € Ord.

1. There is a unique isomorphism fqop : (a + B,€) = (({0} x o, {1} x B), <jex). It
“glues” the two orders together.

2. There is a unique isomorphism go g : (oc- B,€) = (B X a, <jex)-

Proof. 1. By induction on S. Clear for g = 0.
If fop exists, let fo 11 = fasU{(a+0B), (1, 8)} (max. el. of ({0} xa)U({1}x5+1)).
For limits 3, let fo 3 = U7<g fan-
2. By induction on 8. Clear for § = 0.

If 9a,B exists, let 9a,f+1 = Ja,p Y {(Oé B+, (Ba 7))"7 < a}'
For limits 3, let g, 3 = Uw<5 Gay-
The uniqueness follows from Theorem 1.15.8 (recursion for classes). O

We sometimes write +opd,-0rd t0 explicitly refer to ordinal arithmetic (e.g. when
talking about cardinal arithmetic, as is section 2.2).

Page 17 of 104



Set Theory, Lecture Notes Bonn University, Winter 2014 /2015
Contents 1. The Framework of Set Theory

1.18 The Von Neumann Hierarchy
Definition 1.18.1 (Rank). By recursion along (V, €), we define
rank(z) = sup{rank(y) + 1|y € z}.
Axiom (Power Set). For any set x, there is a set P(z), the power set of x, such that
Vy(y € P(z) <>y C x).
Definition 1.18.2. ZF is the axiom system ZF~ together with the Power Set Axiom.
Definition 1.18.3 (Von Neumann hierarchy). By recursion along (Ord, €), let
(i) Vo =10.
(ii) Vay1 = P(Va).
(iil) Va = Up<, Vs for limits a.
Lemma 1.18.4. Suppose that o, f € Ord.
1. V, 1s transitive.
2. Vo€ Vgifa<p.
3. V,NOrd = a.
4.V = Uanrd Vo

Proof. 1. The power set of a transitive set is transitive, and an increasing union of
transitive sets is transitive (exercise).

2. By induction on 8 > . We have V,, € V41 = P(Vy).
If Vo, € Vg € Vgqq, then V,, € Vg, since V4 is transitive by 1.

3. By induction on . We have V5 N Ord = 0.
Suppose that V, NOrd = «, so a € Vo1 NOrd, so a+ 1 =aU{a} C Vo1 NOrd.
If B Va1 NOrd, then 5 CV,NOrd=aq,s0 5 €a+l.
Therefore, V41 N Ord = o 4 1.
If v is a limit, then

VoNOrd = U(VgﬂOrd): U B =suppf = a.
B<a B<a B<a

4. Suppose that  is €-minimal with = ¢ (J,comq Va-

If y € x, let f(y) denote the least ordinal « such that y € V.
Let 8 =sup fly]. Then x C Vg and = € V344, contradiction.
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1.19 The Real Numbers

Definition 1.19.1. Let N=w N =N\ {0}.
If (m,n, k),(m',n' k') € N?> x NT| let

(m,n, k) ~ (m/,n, k') if mk" +n'k = m'k + nk'

After multiplication is defined and the existence of multiplicative inverses of nonzero
. . : e . m—n __m —n
rationals is proved, this condition is equivalent to = .

k K

1. Let Q = (N2 x N*/ ~).
2. Let [(m,n, k)]~ <g [(m/,n', k)]~ if nk + n'k < m'k + nk'.
3. Let [(m,n, k)]~ +q [(m/,n', k)]~ = [(mK' + m'k,nk' + n'k, kk')] .
4. Let [(m,n, k)|~ g [(M/, 0/, k)] = [(mm/ + nn/,mn" +m/n, kK')] ..
5. Let 0g = [(0,0,1)]~ and 1g = [(1,0,1)].

It can be checked that (Q, <@, +q, ‘0, 0g, 1lg) is an ordered field.

Definition 1.19.2. Let R denote the set of left halves A of Dedekind cuts in (Q, <),
i.e. a nonempty subset of Q with the following properties:

1. A is downwards closed: Yxr € AVy < xy € A.
2. A is upwards bounded: JaVy € Ay C x.
3. A has no maximal element.

For instance, R> r = {q € Q|¢ < r}.

(Q’ <Q)

A, r

1. Let e +ry={p+oq|pcx,qecy}
2. Let Or = {p € Q| p <o O}, Ir = {r € Q| p <q 1o}
3. Letz <pyifa Gy
To define the multiplication on R, we first define o : R — P(Q) as follows. Addendum

Lecbh, 20th Oct
1. If z € R and x <g O, let

o(z)={peQ|3qeQ(¢g<gphqg¢z)Ap<0}.
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2. If z € R and =z >R Og, let
o(@)={peQlpeyrp=0}

It can be checked that o is injective, and that o(x)-o(y) := {p-@q | p € 0(z),qg € o(y)} €
ran(o) for all x,y € R. Let

zry=0c'[o(x)ra(y)

It can be checked that (R, <g, +r, ‘r, Or, lr) is a complete ordered field.

5 5 (@, <o)
+ 7 5 (Q,<q)
5 5 (Q,<q)
5 7 3} (Q, <q)
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2 Cardinals

Assuming the Axiom of Choice, we can associate to any set x the least ordinal with the
same size as x. This ordinal is called the cardinality or size of x. In this section, we study
these ordinals, the cardinal numbers, and operations on them: addition, multiplication,
and exponentiation.

2.1 Cardinals and the Axiom of Choice

We can compare the size of two sets by the existence of injections between them.

Definition 2.1.1. Suppose that x,y are sets. We write x < y if there is an injection
f:x—uy.

For example w + 1 < w, i.e. there is an injective function f : w + 1 — w. The relation
=< is transitive. The existence of injections between two sets in both directions implies
the existence of a bijection by the next result.

Lemma 2.1.2 (Bernstein-Cantor). Suppose that a,b are sets and f : a —bandg:b— a
are injective.
Then there is a bijection h : a — b.

Proof. Let ¢ = fla] Cb,let h=fog:b— c.
Then h is injective.
We define by induction on n € w:

b() — b, Co=2¢C
bpy1 = h[bn]u Cn+1 = h[cn]

Then by = b D ¢ = ¢y 2 hlb] = by. Then b, D ¢, D h[b,] = by41 for all n, by induction
on n.
Then b is partitioned into (i.e. is a disjoint union of) the sets

u:ﬂbn:ﬂcn,

necw new
v={J (bn\ ),
new
w= | (en\bnt1).
new

Also, c is partitioned into the sets u,v’, and w, where
v = U (bnt1 \ ent1) -
new

Since h is injective, h [b, \ ¢n] = h[by] \ hlcn] = bnt1 \ Cny1-
So hlv:v — v’ is bijective.
Let ¢ = idyuyw U (hJv). Then i : b — ¢ is bijective. O
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Lemma 2.1.3. Suppose that a is a set.
1. There is an injection f :a — P(a).
2. There is a bijection g : P(a) — 2.
3. Cantor’s Theorem: There is no injection h : P(a) — a.
Proof. 1. Let f:a — P(a), f(x) = {z}. This is injective by Extensionality.
2. Let g: P(a) —» *2, for y € a,g(z)(y) =1 if y € z and g(x)(y) = 0 otherwise.

3. Suppose that h : 2 — a is an injection. We can assume that h is a bijection by
1. and the Bernstein-Cantor Theorem 2.1.2. There is a unique x € %2 such that
x(i) # h=1(i)(3) for all i € a. Then = # h~=1(i) for all i € a, contradiction.

O

Lemma 2.1.4. Suppose that o € Ord.
1. If there is a surjection f : a — x, then there is an injection g : T — «.
2. If g : x — « is an injection, then there is a bijection h : x — 3, for some B < «.

Proof. 1. Let g : z — «, where g(y),y € x, is the least § < a with f(5) = y.
In fact, f o g =id,.

2. Let h = 7o g, where m = 744 <) is the transitive collapse of (g[z], <).
O

Definition 2.1.5. 1. An ordinal « is called a cardinal (number) if for all 8 < «, there
is no injection f:a — (.

2. Let Card denote the class of cardinals.

3. If z is a set, let |x| = T = card(z) denote the least ordinal « such that there is a
bijection f : a — x, if this exists.
We write Greek miniscules &, A, p, . . . for cardinals.

Lemma 2.1.6. An ordinal v is a cardinal if and only if there is some set x with |z| = «.

Proof. If o € Card, then |a| = a.
Suppose that |x| = « and there is an injection f : a — S for some 8 < a.
Then by the Bernstein-Cantor Theorem 2.1.2, there is a bijection g : a@ — .

Then |z| < 8 < a, contradicting the assumption |z| = «, i.e. the minimality of a. O
Definition 2.1.7. 1. A set x is called finite if there is an injection f : x — n for some
n e w.

2. A set z is called infinite if it it not finite.

3. A set zx is called countable if there is an injection f : 2 — w.
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4. A set x is called uncountable if it is not countable.
Lemma 2.1.8. The following are equivalent for an ordinal «.

1. a<w.
2. Bvery injective f : a — « is surjective.

3. Bvery surjective f : a — « is injective.
Proof.

1. = 2.: By induction on @ = n < w. This holds for n = 0.
Suppose this holds for some n.
Suppose that f:n+1—n+1=nU{n} is injective, but not surjective.
We assume that f(n) = n by switching two values of f.
Then f[n : n — n and this is injective, but not surjective, contradicting the
induction assumption.

2. = 1.: Suppose that a > w.
Let f:a— a, f(n) =n+1forn €wand f(B) = for > w.
Then f is injective, but not surjective.

1. = 3.: By induction on n = a < w.
This holds for n = 0. Suppose that the claim holds for n.
Suppose that f:n+ 1 — n+ 1 is surjective, but not injective.
We can assume that f(n) =n and that range(fn) = n.
Then fn : n — n is surjective, but not injective, contradicting the induction
assumption.

3. = 1.: Suppose that @ > w. Let g: @ — «,g(0) =0,9(n+ 1) =n for n < w, g(B) = S for
B > w. Then g is surjective, but not injective.

O

Definition 2.1.9. If (z,<() is a well-order and («, €) is its transitive collapse, then o
is also called the order type type(x, <o) = otp(z, <o) of (z, <o).

Lemma 2.1.10. For any cardinal s there is some cardinal A > k.

Proof. If Kk =n < w, then A :=n+ 1 is a cardinal by the previous lemma. Suppose that
Kk > w and let
A = sup{type(k, <o) | (k, <o) is a well-order }.

denote the supremum of all enumerations of x in different order types. Then A € Ord by
the Power Set Axiom and the Replacement Scheme. Since (k, €) is a wellorder, we have
x < A. Moreover |a| < k for any o < A by the definition of A.

We claim that A is a cardinal. Otherwise there is an injection f : A — « for some
a < A. Since |a| < K, there is also an injection g : A — s. This implies that there is
a bijection h : Kk — A by the Bernstein-Cantor Theorem. For a,f < k, let a <g B if
h(a) € h(B). Then (k, <p) is isomorphic to (A, €), i.e. type(k, <g) = \.
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Claim. There is a well-order (k, <1) with type(k, <1) = A+ 1.

Proof. Let f: k — K, f(n) =n+1lforncw, fla)=afora>w. Let z <y yify=0

or f(z) <o f(y). Then type(k,<1) = X+ 1. O
Then A\ 4+ 1 < A, contradiction. O
Lecture 6
Lemma 2.1.11. 1. Suppose that x C Card, then sup(z) € Card. 22nd Oct

2. Bvery infinite cardinal is a limit ordinal.
Proof. Exercise. Hint for 2.: Construct a bijection o + 1 +> « for « an ordinal. O
Lemma 2.1.12. 1. Vn € w:n € Card.

2. w € Card.
Proof. 1. By Lemma 2.1.8.

2. By 1. and Lemma 2.1.11 1. (w C Card,supw = Jw =J,,o,n = w € Card).

new

Definition 2.1.13. 1. If o € Ord, let a denote the least cardinal A with oo < \.

2. We define X: Ord — Ord (“alef”-function) by recursion on a € Ord.
(i) R(0) :==Ng :=wp = w.
(i) N(a+1) :=Vop1 = way1 := N,
(iii) For limit ordinals o, R(av) := Ry 1= wy 1= supg, Np.
3. A cardinal is called a successor cardinal if it is ofthe form k™ for some k € Card.

4. A cardinal is called a limit cardinal if it is nonzero and not a successor cardinal.

} f f f f f Ord
N, N, Ny N, N r

The size of the gap between the X numbers is strictly increasing, e.g. it is wy between Ry
and Ny and wy between N; and Ng. Le. type(w; \ w) = wy.

For example, w; is the length of the Borel hierarchy, the supremum of the ranks of
countable trees, and the supremum of the Cantor-Bendixson ranks of closed sets of reals.

Lemma 2.1.14 (Cantor’s paradox). Card is a proper class.
Proof. Exercise. 0

Lemma 2.1.15. FEwvery infinite cardinal is of the form R, for some o € Ord.
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Proof. Exercise. O

Axiom (Choice). For every set x and every function f : x — V with f(y) # 0 for all
y € x, there is a choice function g : x — V with g(y) € f(y) for all y € .

Definition 2.1.16. ZFC denotes the axiom system ZF together with the Axiom of
Choice. These are often called the azioms of set theory.

Lemma 2.1.17. |a| < |b] if and only if there is a surjection f : b — a.

Proof. Exercise. This also uses the Axiom of Choice. O
Theorem 2.1.18. 1. Well-ordering Theorem: FEvery set can be well-ordered.

2. For every set x, |z| is defined.

Proof. 2. follows from 1.
To prove 1., consider a choice function for idp(,)\ (g}, i-e.

g:P(x)\ {0} =z, and g(y) € y for all y € P(z) \ {0}.
We define by recursion along (Ord, <) a function h : Ord — V by
(i) h(e) = g(z \ hla]) if z \ hla] # 0.
(ii) h(a) = x otherwise.
Claim. h(«a) = x for some a € Ord.

Proof. Suppose not. We claim that h is injective.

If a < B € Ord, then h(B) € x \ h[5], so h(a) # h(B).

Then h[Ord] is a set by the Separation Axiom.

Then h~! : h[Ord] — Ord is surjective, so Ord is a set by Replacement, contradiction. [

Let « be least with h(a) = x.

Claim. hla is injective.

Proof. If b < v < «, then h(y) € z \ hlv], but h(B) € hlv], so h(B) # h(y). O
Claim. h(B) € x for all 8 < «.

Proof. By minimality of a. O
Claim. hla : a — x is surjective.

0. O

Proof. Since h(a)) = x, so x \ hla]
This proves the theorem. O

Lemma 2.1.19. Suppose x,y € V. Then x <y if and only if |z| < |y|.

Proof. Let k = |z|, A = |y|.
If x <y, then kK < A. Since k € Card, x < .
If Kk <A then k < Aand z < y. ]
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2.2 Cardinal Arithmetic

We first prove some more things about ordinal arithmetic.

Definition 2.2.1. 1. A function f : Ord — Ord is called strictly monotone or strictly
increasing if a < B implies f(a) < f(B), for all a, f € Ord.

2. A function f : Ord — Ord is called weakly monotone or weakly increasing if a < 3
implies that f(a) < f(B) for all «, 5 € Ord.

3. If (Ya)a<p is a sequence in Ord where 3 is a limit ordinal, let lim,<gvo = 7 if for
every 0 < =, there is some 1 < 8 such that for all { withn < { <8, < f(y¢) <.

4. A function f : Ord — Ord is called continuous if limg., f(vg) = f(limg<q ) for
all limit ordinals v and all sequences (7vg)g<q such that limg., v exists.

For weakly monotone functions f, the condition that f is continuous is equivalent to
the condition that supg,, f(75) = f(supg<, vs) for all limit ordinals a and all sequences

(v8) s<a-

Example 2.2.2. e The R-function (it is continuous since supg,, Rg = R, for limits
Q).

e a,: Ord — Ord,an(B) = a+ 8.
e my : Ord — Ord, my(B) = a - 5.

Lemma 2.2.3. For «, 8 € Ord, there are unique ordinals v, with
a=p-v+0dand d < S.

Proof. Let v =sup{n| 8- -n<a}. Then g-v < a.

Claim. FEveryn > 8 is of the form g+ C for some ¢ € Ord.

Proof. By induction on n > 3. O
Let « = 8-+, Then 6 < 8 by definition of ~.

Claim. v,d are unique.

Proof. Suppose that a =0 -v+d=p0-n+( and §,{ < 5.

Assume vy <n. Thena=-v+d< - (v+1) < 5-n+ (= «a, contradiction.
Thus, v =n.

Then -~ = -n. Since + is strictly monotone in the second argument, § = (.

From now on, we write +0o.q and -orq for ordinal addition and multiplication, resp.

Definition 2.2.4. Suppose that x, A € Card.
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1. K4+ X := |z Uyl, where z,y are disjoint with |z| = &, |y| = \.

2. K- A= |rk X Al

3.8 = Pl = [{F 1 £: A= n}l.
Lemma 2.2.5. For allm,n € w, m+n=m-+oqn and m-n =m o n.
Proof. Exercise. O
Lemma 2.2.6. If k > w, \ are cardinals, then k + XA = max{k, \}.

Proof. Suppose that A = max{r, A\}.
Let

£ (0} x £) U ({1} x A)) = A
f(0,a) =20 a, f(La)=2-0oqa+1.
These are distinct by Lemma 2.2.3

If o < A, then 2 -0,q @ < A by induction on «, since A is a limit ordinal.
Hence, f is an injection. Therefore, k + A = A, by Bernstein-Cantor. O

We now introduce the Gdédel ordering on pairs of ordinals to characterise cardinal
multiplication. We don’t use the lexicographical order, because it is not well-founded,
i.e. the class of predecessors of pairs of ordinals can be a proper class.

Definition 2.2.7 (Gédel ordering). Suppose (a, 3), (¢, 8') € Ord?.
Let (a, §) < (o', &) if

(i) max{a, B} < max{a/, '} or
(il) max{a, 8} = max{c/, 5’} and («, B) <jex (&, 5').
Lemma 2.2.8. (Ord?, <) is a well-order.

Proof. For any (a, §) € Ord?, pred_y(a, 8) = {(1,6) | (1,6) < (o, §)} € (max{a, B} +1)
is a set by Problem 10.

Suppose that  C Ord?.

Let v be €-minimal such that v = max{«, 8} for some (o, 3) € z.

Let o be €-minimal such that v = max{«, 5} and (o, 3) € x for some S.

Let 8 be €-minimal such that v = max{«, 5} and («a, §) € x.

Then, (o, #) is <-minimal in z. O

Definition 2.2.9 (Godel pairing). Let G denote the collapsing map of (Ord, <).
Lemma 2.2.10. 1. G : Ord®> — Ord bijective.

2. If k > w is a cardinal, G|(k?) : K2 — K is bijective.
Hence, k- k = k.
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Proof. 1. Let A denote the transitive collapse of (Ord?, <).

Claim. A C Ord.

Proof. For any = € A, (z,€) = (prede(z), €) = (G (z), <), G~H(x) € Ord?, is a
well-order.

To see that x is transitive, suppose that z € y € z € A.

Since A is transitive, z € A. Since (A, €) is a linear order, z and z are €-comparable,
sor€zorr=zorzecc.

We have z # x, since otherwise z € y € z, contradicting the Foundation Axiom.
The same argument applies to x € z. Then z € x and x is therefore an ordinal. [

A is a proper class, because Ord? is a proper class, and G : Ord®> — A is bijective.
So |JA = Ord. Since A is transitive, A = Ord = [J A.

2. We prove the claim by induction along (Card \ w, €).
Suppose that kK = w. We have |G[n X n]| =n-n =n-orqn, by Problem 13.
We have G[n x n] = G(0,n) € Ord.
So G[n x n] is a finite ordinal, i.e. G[n X n] € w.
Then Glw x w| = ,,c, Gl x n],
s0 Glw x w] = w, because sup J,,c,, G[n x n] = w.
Suppose that k£ > w is a cardinal and that G\ x A\] = A for all A € Card \ w with
A < K.
By Problem 12, k is a limit ordinal.
By the induction hypothesis, for o an ordinal with w < a < k, we have

ind.hyp.
laf =" el

|Gla x o]| = |af - al < k.

We have Gla x o] = G(0,«) € Ord.
Also, we have G(0,«) > a, by induction.
Then G[k % k] = ye,, Gla X a] = k.

Therefore, k- k = k. (For ordinals, this is not true in general.)

Lemma 2.2.11. 1. |R| =|¥2|=2".
2. The set C(R,R) of continuous functions of R has size 2“.

Proof. 1. We have R C P(Q), so |R| < |P(Q)| = |P(w)| = |“2| = 2“.
We have the following fact from analysis.
If Iy = [an, by] CR,an < any1 < bpy1 < by and limy, o0 by —ay, = 0, then (), o, In
has a unique element.
Let <°X = Jj_, X.
We construct (I)se<wp recursively along (<“2,S), such that

(i) Is = [as, bs] C R.
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1

5, for s € 2.

(il) bs —as <
(iii) as < agn(p) < bsn(o) < agn(1) < bsn(l) < bs.

If x € 2, let f(z) denote the unique elemen of (.., Loin-

2. For every x € R, let ¢, : R — R denote the constant function with value . Then
cy 7 cy for x #y.
We identify p € Q with {¢ € Q | ¢ <@ p} € R.
Then Q is dense in the reals, Vo € RVndy € Q |z — y| < 2%
Hence every continuous function f : R — R is uniquely determined by f]Q.
There are < |9R| = |*(¥2)| = [**¥2| = [+2| = 2.
O

Definition 2.2.12. 1. A set A C P(z) is called a o-algebra if ) € A,z € A and A is
closed under complements and countable unions.

2. A set x C R is called a Borel set if it is an element of the C-least o-algebra on R
such that the open interval (a,b),a,b € Q is in this o-algebra. This o-algebra is
also called the Borel o-algebra on R.

3. A function f: R — R is called Borel measurable if f~1[(a,b)] is a Borel set for all
a,beqQ.

Definition 2.2.13 (Borel codes). 1. A well-founded labeled tree is a pair (t, f) such
that
(i) t C <“w,t #0.
(ii) t is closed under initial segments, i.e. Vv € tVu C v (u € Yw — u € t).

(iii) t has no infinite branches, i.e. € “w such that z[n € t for all n.
(t with reverse ordering is well-founded.)

(iv) f :end(t) = {(a,b) | a,b € Q}, where end(t) denotes the set of u € t such
that there is no v € ¢ with u G v.

2. Suppose that (¢, f) is a well-founded labeled tree on w.
Note that (t,2) is well-founded by a Problem on the next sheet.
We define by recursion along (¢, 2) for s € t.

(f(s), if s € end(t).
R\ By ¢(s7 (1)), if s € 2™ for some odd n
By ¢(s) = and ¢ is least with s7(i) € ¢.

Uicw Br,r (57 (ng)), if s € 2™ for some even n

{ and {s”(n;) | i € w} are the successors of s in t.

where (g, ..., $n)"(8) := (50, ..., $n, s). Let By y = By (D).
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Lemma 2.2.14. Let T denote the set of well-founded labeled trees on w.
Let

B:={B.r|(t f)eT}.

1. B is the Borel o-algebra on R.

2. |B] =2v.

3. Th set of Borel measurable functions f : R — R has size 2.

4. The set of Lebesque measurable functions f : R — R has size 227,

Proof. 1. Every set By ¢(s) for s € t is a Borel set by induction on (t,2).

Also, B is a o-algebra which contains all open intervals (a,b) C R with a,b € Q.
Since the Borel g-algebra is the C-least such o-algebra, B is the o-algebra of Borel
sets.

2. We have |B| > 2¢, because |R| = 2¥ and {z} € B for any = € R.
We have |P (SYw)| < |¥2| = 2v.
and | (9| = [“u] < [*(92)] = [#xw2] = |42 = 2.

Moreover, |B| < 2¢, since there are at most |P(<“w) x (""“)y| < 2¢.2% = 2% many
—_—

St >f
well-founded labeled trees on w.

3. Every Borel measurable f : R — R is determined by the sets f~![(a,b)], where
a,b € Q. There are at most |“|B|| = }w(“’2)’ = |WXwW2| = |¥2| = 2v.

4. We use the following fact from analysis.
There is a set A C R with |A| = |R| and measure 0 (e.g. the Cantor discontinuum).
Then every B C A has measure 0, and there are |P(A)| = 2(2*) many such sets B.
The characteristic functions of these sets are Lebesgue measurable.
O

2.3 Infinite Sums and Products

Definition 2.3.1. 1. A sequence is a function f: a — V for some a € Ord.
2. We also write a function f: s — V as (f(z))ZES

Definition 2.3.2. Suppose that s is a set and x; € Card for i € s.
1. Let

S

€S

Jx

1€8
where | X;| = k; for i € s and X; N X; = 0 for i # j.

9
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2. Let

)

IT--

€S

[

€S

where |X;| = k; for i € s and [[;c, Xs = {f : 5 = U, Xi | Vi € 5 f(3) € Xi}.

Lemma 2.3.3. Suppose that s is an infinite set and k; € Card with k; > 1 for i € s,
K = SUDP;eg Ki-

1.3 ics ki = |8 - £ = max{|s|, s}

2. If |s| <k, then

ies i = K.

8. If kg > 2 foralli € s, then Y, ki < ], ki
Proof. 1. We have > . ki < |s|- k.

Moreover, [s| < ..k, because k; > 1 for each i € s.
Also, k = sup;eq ki < Y g K-

€S

2. By 1.

3. The claim holds by finite arithmetic if |s| < w, k; < w for all 7 € s.
The claim holds by cardinal addition (Lemma 2.2.6) and cardinal multiplication
(Lemma 2.2.10), if |s| < w and k; > w for some i € s.
Suppose that |s| > w. We use 1.
Let
Lot
15— Ki, 1)(j) = , fori,j € s.
f [Ir FG0G) {07 £72 1 j
Since f is injective, |s| < ], A

We have r < [[;c i, because r; < ;e kj.

O
Lemma 2.3.4. Suppose that k;, \; € Card with k; < A; for all i € s and k = sup;¢, k;.
1 Jicswi < Kl = “S‘fi‘.
2. If s=p € Card\w and 0 < k; < K for all i < j < p, then [[;c ki = K8l

Zmi <H)‘i‘

1€s i€ES

3. Konig’s Theorem:

Proof. 1. 1. is clear.

2. Since p - p = p, we partition g into py-many disjoint sets A, for a < p of size p.

Then HHZ_H<HRZ>

1€ES a<p \i€Aqy
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Since Aq is unbounded in p for every a < pu, [[ic 4. Ki > sup;eca, ki = k.
So Hieu K > KM
3. Suppose that |X;| = A; for each i € s and X =[], Xi.
Then [ X|=]];c, Mi-
Suppose that [[;c, Ai < D s R
Find A; C X with |A;| < k; for each i € s such that X is the disjoint union of the
sets A;.
Let B ={f(i)| f € A;} C X, for i € s, the ith projection of A;.
Find z; € X; \ B; for all i € s, using the Axiom of Choice.
Then (z;)ics € X. Suppose that f = (x;)ies € A; for some j € s.
Then z; € Bj, contradiction.

2.4 Cofinality

The cofinality of an ordinal describes how well the ordinal can be approached from
below. For example, the cofinality of X, is w, since the sequence (X,,)ne. has length w
and supremum X,. We will also see that the cofinality of X,, is R, for all n, i.e. there is
no sequence shorter than N, with supremum R,,.

Definition 2.4.1. Suppose that « is a limit ordinal.
1. A set x C vy is called cofinal or unbounded in ~ if supz = .
2. A function f: o — « is called cofinal if range(f) is cofinal in ~.

3. The cofinality cof(y) of «y is the least ordinal « such that there is a cofinal function
fra—1.

Lemma 2.4.2. Suppose that v is a limit ordinal.
1. cof(y) <.
cof () is always an infinite cardinal.
There is always a strictly monotone continuous cofinal function f : cof(vy) — 7.

cof(v) is the least type(x, €), where x C v is unbounded.

SR

cof () is the least |z|, where x C ~y is unbounded.
6. cof(cof(vy)) = cof(y).
Proof.

1. Note that id, : v — 7 is a cofinal function from v — 7. Since « is the least ordinal
with the property that such a function exists, « is at most ~.
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2. cof(w) is an infinite ordinal, i.e. cof(y) > w, because any function with finite
range cannot be cofinal in a limit ordinal, because functions with finite domains
are always bounded.

Suppose that cof(y) ¢ Card. Then, for some § < cof(y), there is a surjection
g: B — cof(y).

Suppose that f : cof(y) — ~ is cofinal.

Then, fog: 3 — 7 is cofinal, because range(g) = dom(f), thus range(f o g) =
range( f), contradicting the minimality of cof(3). Thus, cof(y) € Card.

3. Suppose that f : cof(y) — = is cofinal. We define a strictly monotone continuous
cofinal function g : cof(y) — 7 in terms of f and by recursion for a C cof(v) as

follows:
£(0), if =0
g(@) = { max{g(B) + 1, f(a)}, ifa=pB+1
supg, 9(8), if v is a limit ordinal

To check that this is well-defined, note that max{g(5) + 1, f(a)} < v if o < 7.
Moreover, if a < cof(y), and g(8) < v for all 8 < a, then supg., g(8) < v, by
definition of cof(7y).

4. If z C ~ is cofinal (or, synonymously, unbounded) and type(z, €) = «, then the
order preserving enumeration f : @ — x is cofinal. So cof(y) < type(z, €).
If a = cof(), then by 3. there is a strictly monotone continuous cofinal g : & — .
Let 2 = range(g). Then type(z, €) = cof(y).

5. If  C v is unbounded, then type(z, €) > cof(gamma), by 4.
Then |z| > cof(7y), since cof(y) € Card, by 2.

6. Suppose that f : cof(y) — ~ is cofinal and strictly monotone (by 3.) and g :
cof (cof(y)) — cof(7) is cofinal and strictly monotone (by 3.).
We claim that f o g : cof(cof(v)) — = is cofinal.
If B < ~, find a € cof(y) with f(a) > B (since f is cofinal and range(f) thus
unbounded, the desired « exists). Analogously, find o/ € cof(cof(v)) with g(a/) >
a.

Then (fog)(a’) = f(g(¢)) > f(a) > B and f o g is thus cofinal in +.

Lemma 2.4.3. Suppose that A is an infinite cardinal. Then

cof (A\) = min {oz | 3(Ki)ica € “N ZHZ' = )\} .

<o

Proof. “<™ Let a be minimal such that there is a sequence (k;)i<o With D>, mi = A.
We can assume that o < A.
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Then,
Zﬁi — |O[| . sup K = max{\oz|,$up ﬁi}7

i<a 1< 1<

by Lemma 2.3.3. Then sup;_, ki = A.

“>”:. Suppose that f : cof(\) — A is cofinal.

Then,
> fl)= sup f(i)=
i<cof(\) z<cof()\)
O
Lemma 2.4.4. Suppose that k is an infinite cardinal.
Then the set of all cofinal functions f : cof(k) — Kk has size koot ()
Proof. Exercise. O

Lemma 2.4.5. Suppose that k is a infinite cardinal. Then
1. kOfR) > g,
2. cof(2%) > K

Proof. 1. There is a sequence (K;)j<cof(x); Ki < K With )
Konig’s Theorem (Lemma 3 (3)),

Z Ky < H K = i)

i<cof(k) i<cof(k)

i<cof(r) Wi = K- Then, by

2. Suppose that cof(2%) < x. There is a sequence (k;)j<cof(2r) With x; < 2% and
Zi<c0f(2”) k; = 2. Then,

2/43 — Z Ki < H 2/6 COf(?K) QH'COf(Qﬁ) — 2/@

i<cof(2%) 1<cof(2%)

by Konig’s Theorem (Lemma 3 (3)) and the assumption that cof(2%) < k, contra-
diction.
O

Definition 2.4.6. Suppose that x is an infnite cardinal.
1. k is called regular if cof(k) = k.
2. k is called singular if cof(k) < k.
Lemma 2.4.7. 1. If k is an infinite cardinal, k* is reqular.

2. W, is the least singular cardinal.
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Proof. 1. There is a sequence (Sa)a<cof(x+) Within
(i) So C KT,
(i) |Sal < kT,

(Hl) KT = Ua<cof(f§+) Sa.
If cof (k1) < k™, then cof (k') < k. Then,

U So| <Kk K=k,

a<cof(kT)
contradiction.

2. By 1.

2.5 Cardinal Exponentiation

The values of cardinal exponentiation for infinite cardinals are not decided by ZFC, for
example it is not provable in ZFC that 2% = X; and it is not provable that 280 £ X,

In this section, we will see how the continuum function mapping x to 2" is related to

the Gimel function mapping & to k<),

Definition 2.5.1. 1. The continuum hypothesis (CH) is the statement 2“ = w;.

2. The generalised continuum hypothesis (GCH) is the statement:

Vi € Card \ w 2" = kT,

3. A cardinal  is a strong limit cardinal if

Yy € Card Nk 2* < k.

% % % — % — % Card, GCH
NO Ny = QNO Ny = 2N1 Nn—f—l = 2N" Nw

Definition 2.5.2. Suppose that x, A are infinite cardinals.

<X = sup,.y klod,

1. K
2. (< k) i=sup,op ||

<Ay — e
3. M =y ‘.

Remark 2.5.3. The function f : Card \ w — Card \ w, f(k) = 2", satisfies the following
properties for all k, A € Card \ w:
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1. k< A= 28 <2\,
2. Kk < cof(2F) < 2%,

For regular cardinals x, A, these are the only properties of f provable in ZFC, by Easton’s
Theorem [3, 5].

Remark 2.5.4.

1. The continuum hypothesis CH (2% = Xy) is not decided by ZFC. It is consistent
with ZFC that 2% =Ry, or 2% =Ry, ..., 2% =R 4 ... 280 =R 4, ...

2. The generalised continuum hypothesis GCH (Vx € Card \ w 2" = k™) is not decided
by ZFC.

The next result shows how to determine the continuum function which maps k €
Card \ w to 2¢ from the J-function(“gimel™function) J : k — %) for x an infinite
cardinal.

Lemma 2.5.5. Suppose that x, A are infinite cardinals.

1. If K <\, then k) = 2N
In particular, if k is reqular, then 2% = k" = 1(k).

2. 2% = (2<K)*°f(),
3. If k is a limit cardinal and there is no v < k with 27 = 2<% then

2% = 1) where p=2<% = sup 2"
peCardNk

4. If k is a singular limit cardinal and there is some v < Kk with 27 = 2<% then
28 = 2<F,

Proof. 1. kM < (2°)) = 28X = 2% < M,

2. Suppose that r; < k for i < cof(k) and kK =) ki. Then

i<cof (k)
ok — 22i<cof(rc) Ki H 2k < H 9<k _ (2<,§)C0f(n)
i<cof(k) i<cof (k)

(2<H)cof(n) < (25)cof(/~c) _ 2n-cof(n) — 9K

3. There is a strictly increasing sequence (")/i)i<cof(n) such that 27 < 2% for all ¢ <
J < cof(k).
Then 2<% = sup; cof(x) 27, 50 cof (27) = cof (k).
By 2., 2F = (2<n)00f(“) — (2<f§)00f(2<ﬁ)'

Page 36 of 104

Lecture 10
10th Nov



Set Theory, Lecture Notes Bonn University, Winter 2014 /2015
Contents 2. Cardinals

4. We can choose v with v > cof(k).
Then, by 2.,
or — (2<R)C0f(’€) — 27-cof(n) — 97 = 9<K
O

Then next two results show how to determine the cardinal exponentiation function
mapping (k,A) € (Card \ w)? to A* from the J-function J(k) = £ for k an infinite
cardinal.

Lemma 2.5.6. Suppose k, A € Card \ w.

1. If k < cof(N), then

)\“:Z\a|”:)\'(< A=A sup p.
a<rk peCardNA

2. If X is a limit cardinal and cof(\) < k, then \* = ((< A)")*f.

3. Hausdorff’s formula:

(A)" =A% AT,
Proof. 1. Since k < cof(\), every function f : x — X has bounded range in A. Hence
A= Ugen "o
Thus
A = Fal < al* =X-sup |aff = X (< N)F < AF
U > laf ad! | (<A)

a<A a<
2. Suppose that \ = Zi<c0f()\) A with 2 < \; < A for all i < cof(A).

K K

A — Z Ai | < H Ai | = H (AF) < H (< V) = ((< )\),ﬁ)cof(,\)

1<cof(\) i<cof(\) i<cof(\) i<cof(X)
(< AP0 < (ol — o) _ g,
3. If kK < AT = cof (A1), then
(V)" = AT (< M) =2t .
If kK > AT, then (AT)" = 2%, by Lemma 2.5.5 (1) and also \* = 2%, so \* = 2 >
k> At Hence A\® - AT = \F = 28 = (AH)",
O]

Lemma 2.5.7. Suppose that k, A are infinite cardinals.

1. If There is some p < X with A < p, then A\* = u~.

Page 37 of 104



Set Theory, Lecture Notes Bonn University, Winter 2014 /2015
Contents 2. Cardinals

2. If k < cof(X\) and p* < X for all cardinals p < X\, then \* = \.
3. If cof(N\) < k < X and p® < X for all cardinals pn < X, then \* = I(X).
Proof. 1. p® < X% < (uF)" = pir = pt
2. If A = p, then by Hausdorff’s formula (Lemma 2.5.6 (3)),
N = () = ot = .

If X is a limit cardinal, then A = (< )" = sup,ccaran #° = A by the assumption.
Then A < A = X- (< A)F = A- A=\

3. Since cof () < k < A, A is a limit cardinal. Again: A = (< \)".
By Lemma 2.5.6 (2), \* = ((< )\)H)COf(A) =I(\).
0

Definition 2.5.8. An uncountable cardinal x is called inaccessible if k is a regular strong
limit cardinal, i.e. cof(k) = k and for all cardinals p < k, 2* < k.

Lemma 2.5.9. If k is inaccessible, then there is a singular strong limit cardinal smaller
than k.

Proof. Consider the J-numbers (“bet”-numbers):
Jo = Ng = w.

Jos1 = 23« for o € Ord.

Jg = sup J,, for 4 limit ordinal.
a<f

Then 3, is singular, since cof(3J,) = w. Then 3, < &, since & is inaccessible. O
Definition 2.5.10. If s is a regular cardinal, let
H, ={z||te(z)] < k}.

H, is set set of sets with hereditary size < k.
Lemma 2.5.11. Suppose that k is an infinite reqular cardinal.

1. H, is transitive.

2. H, CV,.

3. If k is uncountable, then (Hy, €) is a model of ZF~.

4. If Kk is inaccessible, then Hy, = V.

5. If Kk is inaccessible, then Vi, is a model of ZFC.
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6. If k is inaccessible, then |H,| = V| = k.
7. If k = pt, p € Card, then |H,| = 2~.
Proof. Lecture 11
13th Nov

1. Suppose z € H,;,y € x. Then |tc(x)| < k and y € tc(z), so tc(y) C te(x).
Then |tc(y)| < |tc(x)| < Kk, so y € Hy.

2. We claim that rank[z] := {rank(y)|y € 2} € Ord if z is transitive.
Suppose that z is transitive and rank|[z] is not an ordinal.
Let v € rank[z] be least such that for some « € 7, o ¢ rank|x].
Find y € x with rank(y) = ~.
Then rank(y) = sup{rank(z) + 1|z € y} (=y =S+ 1). If y = §+ 1, there is some
z € y with rank 8. Then z € x, since x is transitive, contradiction.
If 7 is a limit ordinal, then for unboundedly many 8 < -, there is some z € y with
rank(y) = S.
Then 8 € rank[z] for some §. This contradicts the minimality of .
Recall rank(z) = min{a € Ord | x € V41 }.
We claim that for every = € Hy,rank(z) < k.
Suppose that © € H,. Then |tc(x)| < k.
We have rank(z) < rank(tc(z)) < sup(rank[tc(z)]) + 1 < k. So z € V.

3. We need to check whether H, satisfies the axioms of ZF ™.
Set Ex: ) € H.,..

Ext: Since H, is transitive.
Found: e&-relation is well-founded.

Pair: Since |tc({z,y})| < |tc(z) Utc(y)| < k.

Inf: Since kK > w, so w € H,. (Only here it is needed that x is uncountable. It can
be checked that H,, the set of hereditary finite sets, is a model for ZF+—Inf.)

Union: |tc (Jz)| < |te(x)] < k.
Sep: Follows from the Replacement Axiom.

Rep: Let x € Hy, f: Kk — H,.

We have te(range(f)) = U, to(/(@)), | te(f(a))| < . Ja] < &,
Then |tc(range(f))| < k, since k is regular.

4. Suppose k is inaccessible.
We prove V,, € H, for all a < k by induction.
Vo =0 € H,.
If V,, € Hy, then |Voq1| = olVel < k. since & is a strong limit cardinal.
If @ < k is a limit ordinal and Vg € H, for all 8 < a, then |V,| = sup{|V3| | 5 <
a} < K, since k is regular.
Then V,, C H,, since H,, is transitive.
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5. We need to check whether H,, satisfies, in addition to ZF~ (see 3.), the Power Set
Axiom and the Axiom of Choice.

Pow: Suppose that z € V,; = H,.
If x € Vj, then x C V,, for some o < k.
Then = € V1. We have P(z) € P(Vyt1) = Vago C Vi
By Separation on V, = Hy, P(z) € V.

AC: Exercise.

6. We prove |V, | < k by induction on o < k. This is as in 4.
Therefore |V,;| < k. Also k C Vj; (recall: V, N Ord = «), so |Vi| > k.

7. Suppose that xk = u*, u € Card, |H,| = 2*.
Since P(u) C Hy, 2" < |H,|. We claim that there is a surjection f : P(uxu) — Hy.
This implies that 2# = |P(u x p)| > |Hyl.
We define f: P(u x u) — Hy as follows:
If # C px p is a well-founded extensional (binary) relation on p (i.e. field(z) = p),
let 7 = w4 — z denote the transitive collapsing map of (u,), and let
F(z) = (0).
Otherwise, let f(z) = 0.
[ is well-defined: Suppose that x € P(u x p).
By induction for @ < p along (u,z),7(a) € H,, since w(a) = {w(8) | B <
1, (B, ) € z}.
f is surjective: Suppose that y € Hy. Since |tc(y)| < k, there is a transitive set
z € Hy, of size p with y € z.
Let h : p — z be bijective with h(0) = y.
Let z = {(a, B) € p x pu | k() € h(B)}.
Then h = 7, 4, 7(0) =y, and f(z) = y.

3 Applications of the Axiom of Choice

In this section, we consider some results in ZFC which cannot be proved in ZF. Several
important consequences of the Axiom of Choice, for instance the well-ordering principle
and Zorn’s Lemma, imply the Axiom of Choice in ZF.

3.1 Various Applications

Lemma 3.1.1. The following are equivalent:

1. AC.
2. Bvery surjective function f: x — y has a left inverse, i.e. a function g: y — x with
go f=idy.
Proof. Exercise. 0
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Theorem 3.1.2. The following are equivalent:
1. AC.
2. The Well-ordering Theorem (every set can be well-ordered, Theorem 2.1.18 (1)).
Proof.
“1.=2.": See the proof of Theorem 2.1.18 (1).
“2.=1.”: Suppose that x is a set ad f : x — y is a function. with f(z) # 0 for all z € x.

Let
2= U f(w) = range().

ucx

Suppose that (z, <) is a well-order.
Let g: © — z, where g(u) is the <¢-least element of f(u).
Then g is a choice function for f.

Definition 3.1.3. Suppose that (z, <) is a partial order, y C z,v € z. Lecture 12
17th Nov
1. y is called chain if (y, Jy) is a linear order.
2. v is called a (strict) upper bound for y if for all u € y, u < v (for all u € y, u < v).
3. v € x is called a mazimal element of z, if for all u € z, u < wv.
Theorem 3.1.4. In ZF the following are equivalent.
1. AC.

2. Zorn’s Lemma: If (x,<) is a partial order such that every chain has an upper
bound, then there is a maximal element in (z,<).

Proofl.=2.: Suppose that (z, <) is a partial order such that every chain in (z, <) has an
upper bound.
Suppose that (x, <) has no maximal elements.
There is a function

f:{yCz|yisachainin (z,<)} -z

such that for all such y, f(y) is a strict upper bound for y.
By recursion, we define for o € Ord.

) flgla]), if g[a] is a chain in (z, <)
gl = {@, otherwise.

By induction on « € Ord, g[a] is a chain in (z, <).
Therefore g : Ord — x is injective, contradicting the Replacement Axiom.
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2.=1.: Suppose that f:z — y is a function such that f(u) # 0 for all u € x.
A partial choice function is a partial function g : dom(g) — y,dom(g) C z such
that g(u) € f(u) for all u € dom(g) C x.
We order the set of partial choice functions for f by inclusion.
Then for any chain z, |z is an upper bound for z.
By Zorn’s Lemma, there is a maximal partial choice function ¢'.
We show that then dom(g’) = z. Suppose dom(g’) # z, then there is some u €
z \ dom(g’). Let z € f(u). Let ¢" = ¢' U{(u, 2)}, contradicting the maximality of
g
We may choose z here, because we are in need of just one choice (the Axiom of
Choice is needed only for infinitely many simultaneous choices).
O

Lemma 3.1.5. Every vector space V over a field K has a K-basis, i.e. a mazimal
K-linearly independent subset of V.

Proof. Apply Zorn’s Lemma to the set of all K-linearly independent subsets of V', ordered
by inclusion. ]

Lemma 3.1.6. 1. R as a Q-vector space has a basis.
2. The Q-vector space R has 2(2%) many Q-vector space automorphisms.
Proof. 1. By the previous lemma.

2. Suppose that B C R is a Q-basis fiir R.
Then [R| < [<¥Q| - |<¥B| = max{|Q|, | B|}, by Problem 15.
Therefore, |B| = 2%.
There are 2(2°) many permutations of B by Problem 15.
Each permutation of B defines a vector space automorphism of R.
There are at most [FR| = |R|Bl = (2¢)Z") = 22*) possible such automorphism,
since there are not more self-mappings of R.
O

Definition 3.1.7. Suppose that F is an equivalence relation on a set x.
A transversal for E is a set T' C x such that

1. Vyeax3dzeT (y,z) € E.
2. Vy,z€ T,y # z= —~yk=z.

In this case, |T'| = |X/E]|.

Lemma 3.1.8. In ZF, the following are equivalent.
1. AC.

2. For any set x and any equivalence relation E on x, there is a transversal for E.
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Proof. Exercise. O

Lemma 3.1.9. Let E denote the equivalence relation on R defined by (x,y) € E if
r—1y€eqQ.

1. There is a transversal for E.
2. Any transversal T for E is not Lebesque measurable.
Proof. 1. By the previous lemma.

2. Let T, ={p+2 mod 1|z eT} for pe Q. Then T, CJ0,1).

Then

(a) T,NTy =0 for p,g € QN[0,1),p # ¢:
IfyeT,NTy, theny =p+yo mod1l=qg+y mod1l. with yo,y1 €T, so
yo—y1 mod1l=qg—peQ,soyy =1y and p = ¢, contradiction.

(b) 0,1) = U,eqno,1) Ips by definition of T):
If 2 € [0,1), then z = p+ x for some x € T,p € Q. Find p' € [0,1) N Q with
p—p € Z. We claim that z € T,y. Then z = p+2 =p' +2 mod 1. So
z GTp/.

We claim that T is not Lebesgue measurable.
Let A denote the Lebesgue measure on R.

We have A([0,1)) = > ,cqnjo,1) MIp) by (a),(b).
Note that for all p,g € QN [0,1),\(T) = A(T}) (because T), and T; are only
translations of one another).

If \(T}) = 0 for some (all) p € QN [0,1), then A([0,1)) = 0, contradiction.

If \(T,) > 0 for some (all) p € QN [0,1), then A([0,1)) = oo, contradiction.

Thus T is not Lebesgue measurable.

Definition 3.1.10. 1. If z,y € Y2 with x # v, let
Apy ={newlz(n) #yn)}.

2. Let Fy denote the following equivalence relation on “2:
Let xEpy if and only if A, , is finite.

3. A flip set Ais aset A C “2 such that the following condition holds:
For all z,y € “2 with (i) # y(i) for exactly onei € w, z € A+ y ¢ A.

Lemma 3.1.11. There is a flip set.

Proof. Let T be a transversal for Ej.
Let A denote the set of all x € “2 such that for the unique y € T' Ey-equivalent to x,
|Agy| is even. Then A is a flip set. O

Page 43 of 104



Set Theory, Lecture Notes Bonn University, Winter 2014 /2015
Contents 3. Applications of the Axiom of Choice

Lemma 3.1.12. Every set A C R has a countable subset D which is dense in A, i.e.
DNI#0 for every open set ) 1 C A.

Proof. Let (a4, b;)icw, eunmerate the open intervals in R with a;,b; € Q and AN (a;, b;) #

(. Find x; € AN (a;,b;) and let D = {z; | i € w}. Then D is dense in A. O

Definition 3.1.13 (Standard topology of R). Suppose A C R and f: A — R.

1. A C R is called open (with respect to the standard topology of R) if for all a € A
there is an € > 0 such that B.(a) :={reR| —e<r—a<e} C A.

2. A C Ris called closed (with respect to the standard topology of R) if (\A) C R is
open with respect to the standard topology of R.

3. f: A— Ris called continuous (with respect to the standard topology of R) if for
any open subset O C R, f~1(0O) C A open with respect to the subspace topology
of R for A, i.e. for every open subset O C R there is an open subset U C R with
UNA = f~50O). More generally, a function f : x — y is called continuous if
the preimage of every open subset of y is an open subset of z with respect to the
respective topologies on x and y.

4. A C R is called sequentially closed if for any sequence (a;);c, With a; € A for every
1€ w, lim; o a; € A.

5. f + A —-C R is called sequentially continuous, if for every sequence (a;)ic, with
a; € A for every i € w and lim;_,o0 a; = a, lim;—o f(a;) = f(a).

Lemma 3.1.14. 1. If A C R is sequentially closed, then A is closed with resect to the
topology of R.

2. If A CR and f: A — R is sequentially continuous, then f is continuous with
respect to the topology of R.

Proof. For the first claim, suppose that A is not closed, i.e. R\ A is not open. Then
there is some = € R\ A such that for every n € w, AN (z — %,:L‘ + 2%) # . Find
Tn € AN(x— %, T+ %) using the Aciom if Choice. Then x = lim,,_ o =, contradiction.
For the second claim, suppose that f is not continuous. Then there is an interval (a, b)
such that f~![(a,b)] is not open. As in the first part, there are z,, € R\ f~![(a,b)] such
that = lim, 00 ,, € £ ![(a,b)]. Then f(x) = lim, 0o f(z,) € R\ (a,b), contradiction.
O

The converse direction of the previous lemma, is provable in ZF.
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3.2 Filters and Ultrafilters

Filters formalize the notion of largeness. Examples for filters are the filter of all subsets
of the unit interval [0, 1] with measure 1, and the filter of all co-countable subsets of the
unit interval [0, 1], i.e. the sets whose complement is countable.

Definition 3.2.1. 1. A filter on a set a is a set F' C P(a) such that
(i) ac F,0 ¢ F.
(ii) Ve,y e Fzny € F.
(iii) Ve e FVy Ca(zx Cy=y € F).
2. An ideal on a set a is a set I C P(a) such that P(a) \ I is a filter on a.

3. An ultrafilter on a set on a set a is a filter F' on a such that for all z € P(a), z € F
ora\ze€F.

4. The Frechet filter F on an infinite set a is the filter
F={xCala\x is finite }.
Sets with finite complement are sometimes called co-finite.

5. A filter F on a set a is called mazimal if there is no filter G on a with G ; G.

6. A filter is called principal if it contains a finite set.
Lemma 3.2.2. A filter F' on a set a is maximal if and only if F is an ultrafilter on a.

Proof. Exercise. O

Theorem 3.2.3. 1. If F' is a filter on a set a, then there is an ultrafilter U on a with
FCU.

2. For any infinite set a, there is a non-principal ultrafilter on a.
Proof. 1. Let S ={G | G is a filter on a with F' C G}, ordered by inclusion.

Claim. For any nonempty chain x C S,|Jz is a filter in S.

Proof. We have a € Jz,0 ¢ Uz, F C Jx.
Suppose that y,z € |Jx, then there is some G € z with y,z € G. Then y Nz €

G Cx.
Suppose that y € Jz,y C z C a. Then there is some G € x with y € G. Then
zeGCx. O

By Zorn’s Lemma, there is a maximal filter G on a with F' C G.
Then G is an ultrafilter by the previous lemma.

2. Apply 1. to the Frechet filter F.
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4 Club Sets and Stationary Sets

Closed unbounded sets (clubs) of an uncountable regular cardinal x are intuitively very
large, and we can define the club filter on k, i.e. the filter of those sets which contain a
club. Clubs appear as sets of closure points of functions on x.

4.1 The Club Filter

The closed unbounded sets lead to the notion of stationary subsets of k, i.e. those sets
which have nonempty intersection with every closed unbounded subset of «.

Definition 4.1.1. Suppose that & is a limit ordinal with cof(x) > w and C, S C k.
1. C is bounded in k if there is some « < k with C C «.
2. C is unbounded in k if C is not bounded in k.

3. A limit point of C is an ordinal a < k such that for all § < « there is some v € C
with < v < a.

4. C'is closed in k if every limit point a < k of C'isin C, or, equivalently, if sup(z) € C
for all nonempty subsets x C C' which are bounded in .

5. A club set C'in k is a closed unbounded subset of .

6. S is called stationary if S N D # () for every club set D in x.
Definition 4.1.2. Let Lim denote the class of all limit ordinals.
Lemma 4.1.3. Suppose that k is a limit ordinal with cof(k) > w.

1. Lim Nk is a club set in k.

k\ Lim is not a club set in k.

If o < K, then [a,k) = {8 < k| a < B < K} is a club set in K.

If k is reqular and o < K, then {a-0rq B | B < K} is a club set in k.
If C, D are club sets in k, CND is a club set in k.

If S C k s unbounded, then the set of limit points o < K is a club set in K.

XS & e

If k is reqular and f: Kk — Kk is a function, the set of closure points a < k of f,
i.e. {a<k| fla] Ca} forms a club set in k.

8. If u < cof(k) regular, then
B ={a <k |cof(a) =p} > p

18 stationary in K.
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Proof. 1.,3.,4. clear. 2.,5.,6.,7. exercise.

8. Suppose that C' C « is a club set in «.
Let f: A — C be the order preserving enumeration of C'.
Since C'is a club, f is continuous.
We have A > cof(k) > p. Then f(u) € C has cofinality p, because f is continuous,
sopueCNE.

O]

Lemma 4.1.4. Suppose that k > w is reqular.

If v < k and Cy, is a club set in k for all a < 7y, then C =), Ca is a club set in k.

a<ly

Proof. C'is closed in k.

It remains to show that C' is unbounded in k. Suppose that a < .

Find a strictly increasing function f : y-orqw — & with f(0) > a and f(y-oran+ord8) €
Cgforallnecw,B <.

Then sup(range(f)) € C' =), Ca-

The regularity of x is used in the definition of f. O

Definition 4.1.5. Suppose that v is a limit ordinal, and C, C « is a club set in v for
all &« <. The diagonal intersection of (Cy)a<~ is defined as

ACy={B<vy|Va<BpeCa}.
a<y

Lemma 4.1.6. Suppose that k > w is a regular cardinal and C, C K is a club set for
every a < k. Then C = % Cq 1s a club set in k.
a<K

Proof.
Claim. C is closed in k.

Proof. Suppose that v < k is a limit point of C.
For every < v <%Ca)\(6+1)§6’5.
a<k
So 7 is a limit point of Cg, so v € Cg. Then v € % Ca. O
a< K
Claim. C is unbounded in k.

Proof. Suppose that ag < k. Let

Opt1 = min{(ﬂ CZ) \ (o, + 1)}

for n € w. For the definition of oy, 1, the regularity of s is needed.
Let a = sup,,¢,, o < K.
It remains to show that o € BA Cs. Suppose that 8 < a.

<K
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Find n € w with 8 < a;,. Then for all i > n, 5 < .

Then a1 € Cg for all ¢ > n. Since Cj is closed in k, a = sup;~, a1 € Cg.

Hence o € 6A Cs. O
<K

Definition 4.1.7. Suppose that v € Ord and S C ~.
A function f: S — v is called regressive if f(a) < « for all a € S with o # 0.

Definition 4.1.8. Suppose that & is a limit ordinal of uncountable cofinality.
Then the club filter C,, on k is the set of all X C x such that there is a club set C in &
with C C X. This is in fact a filter by Lemma 4.1.3.

Lemma 4.1.9 (Fodor’s Lemma). Suppose that k is a regular uncountable cardinal,
S C k stationary, f: S — Kk regressive.
Then there is a stationary set S C S such that f[S is constant.

Proof. Suppose that f~![{i}] is non-stationary for all i < .
Find club sets C; in x with C; N f1[{i}] =0 for all i < k.
Then C := é C; is closed and unbounded in k.

Suppose that o € SN C.
Then a € C; for all i < a. Then f(«) # i for all i < .
Hence, f(a) > a, contricting that f is regressive. O

Definition 4.1.10. Suppose that F'is a filter on a cardinal x.
1. Let F*:={xk\ X | X € F'}, the dual ideal of F.
2. Let FT:={S Ck|VC € FCNS # 0}, the F-positive sets of k.

3. Suppose that 4 <  is regular. The filter F' is < p-complete if for all (A;);<, with
A; € F for i <,y < p, then mi<~yAi eF.

Consider the club filter C,; on . Then C; is the set of stationary sets of .

4.2 Splitting Stationary Sets

Theorem 4.2.1 (Ulam). Suppose that k = p+, u € Card.
Then there are pairwise disjoint stationary sets S; for i < k.

Proof. Suppose that f, : cof(y) — v is cofinal for every v € x N Lim.
For i < p, let

Al ={y <k |i<cot(y) = dom(f,), f,(i) = j}.
Let ,
Al ={y < k|jcrange(f,)} = U Al

i<p

Note that Ag NAF =0 for j # k.
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Claim. For k-many j < k, A7 is stationary in k.

Proof. Suppose that jy < k.
Let
min (range(fa) \ (jo+ 1)), if a > jo.

h: kN Lim — K, h(a) = ) ,
07 lfagjo.

By Fodor’s Lemma (Lemma 4.1.9), there is a stationary set S C xNLim and some j > j
such that h(a) = j for all a € S.

Then S C A7 since for all a € S, j € range(fa).

Hence, every superset of S is also stationary. O

Claim. For some i < p for k-many j < k, Ag is stationary.

Proof. If AV = Ui L Ag is stationary, then for some o < p, Al , 1s stationary in &, since
the intersection of y-many club sets is a club set.
Then there is some o < p so that o;j = a for k-many j < k. Let i = a. 0

This proves Ulam’s Theorem. ]

Ulam’s Theorem also holds for any < k-complete filter F' on «, implying there are
pairwise disjoint F-positive sets S; € F'* for i < k.

Lemma 4.2.2. For any reqular k > w, there are k-many disjoint stationary subsets of
K.

Proof. For k = p*, this holds by the previous theorem.

For regular limit cardinals, we have R, < k for all a < k.

Then & is the disjoint union of the sets E{ = {a < & | cof(a) = A}, where X\ < & is
regular, and each EY is stationary. O

Theorem 4.2.3 (Solovay). Suppose that k > w is reqular and S C k is stationary.
Then there are k-many disjoint stationary subsets of S.

Proof. Let
Ssing = {av € § | cof(a) < a},
Sreg = {av € S| cof(a) = a}.
Claim. There is a stationary set S with S C Ssing 0T S C Sreg and Cy, for o € S with
(i) Co C « is closed and unbounded.
(ii) ConN S = 0.

Proof. 1. Suppose that Sging is stationary in .
By Fodor’s Lemma (Lemma 4.1.9), there is a stationary set S C Ssing and a regular
A < k sch that cof(a) = Aor all « € S.
For any a € S, let C,, C « club set with type(Cy,) = .
Since cof(B) < A for any 8 € Cq, Co NS = 0.
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2. Suppose that Sieg is stationary in .
Let S = {a € Sieg | Sreg N @ is non-stationary in ac}.

Subclaim. S is stationary in k.

Proof. Suppose that C' C k \ (w + 1) is closed and unbounded in k.

Let C’ denote the club set of all limit points! of C, then C’ C C.

Let o = min(Seg N C’). Then C' N« is a club set in .

Then C’' N« is also a club set in «, since « is regular?.

Then Syeg N (C' Na) =0, s0 Sreg N @ is non-stationary in .

Hence o € SN C. O

For a € S, let f,: cof(a) — a be the order preserving enumeration of C,,.
For ¢,7 < K, let

Al ={a €8 |iedom(f,) = cof(e) and f,(i) = 5},
A7