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3. Boolean-valued models

3.1. Background. For constructing a model of ZFC, the first problem is that one cannot prove
in our base theory ZFC that there exist set models of ZFC by the second incompleteness theorem.
There is no place to explain the proof of incompleteness here, but we sketch the following weaker
variant:

Remark 3.1. ZFC cannot prove the existence of a transitive set model (M,2) of ZFC. To see this,
let ↵ be least such that there is such a model (N,2) with OrdN = ↵. Let (N,2) be such a model.
Now suppose (N,2) |= “there exists a transitive set model (M,2) of ZFC”. One can show that
the statement “(M,2) |= ZFC” is absolute between (N,2) and (V,2), since N is transitive and
satisfies enough recursion to define the satisfaction relation |=.

Since there might not exist a set model of ZFC, one can instead try to construct a proper class
model. It is natural to try to construct a transitive proper class model, but the problem is that
such models do not necessarily exist:

Remark 3.2. Suppose that V = L, where L is the constructible universe (see e.g. [Jech: Set
theory, chapter 13]). This is a minimal transitive proper class model of ZFC, i.e. if V = L, then
there do not exist any transitive class models M ( V . Then there do not exist any wellfounded
proper class models either, since the Mostowski collapse would map such a model to an isomorphic
transitive model.

It is not clear how one would directly construct an illfounded model. However, there is a natural
strategy that works:

Construct a class model with truth values in a Boolean algebra.

In fact, this will also give rise to an illfounded proper class (actual) model of set theory. Note that
an alternative (and more common) approach is to start with a transitive set model M 2 V of a
fragment ZFC

⇤ of ZFC and construct a model M [G] of ZFC⇤ in V with M ✓ M [G]. This model
M [G] will come up later as well. The two approaches are equivalent.

We first want to motivate truth values in a Boolean algebra. Think of a situation where you
are not sure whether a property holds. For instance, take a random variable ⇠ : R ! R and the
property “⇠ > 0”. Since ⇠ might take positive and negative values, we want to give this formula
a “fuzzy” value, for example the set {x 2 R | ⇠(x) > 0}, or instead its equivalence class up to
Lebesgue null sets.

In general, one needs to have operations ^, _ and ¬ on truth values that correspond to the
operations on formulas. In other words, the truth values should form a Boolean algebra. We will
thus study Boolean algebras. The Lebesgue meaesurable sets of reals modulo null sets are an
example of a Boolean algebra.

I would like to point out a di↵erence to continuous logic, where all truth values in the interval
[0, 1]. Regarding the example of random variables, one could try to define the truth value of
“⇠ > 0” for a random variable ⇠ : [0, 1] ! R as the measure of the set {x 2 R | ⇠(x) > 0}. But
then one cannot tell from the truth values of two statements ' and  alone whether they are
compatible: given that ' is true with probability 60% and  with probability 30%, we cannot tell
whether both ' and  can hold at the same time. Ini contrast, the truth values of incompatible
statements ' and  are incompatible elements a, b of a Boolean algebra, i.e. a ^ b = 0.

3.2. Boolean algebras. A partial order  is a reflexive, transitive and antisymmetric.6 binary
relation on a set B. For example, the truth values 0 (false) and 1 (true) form a partial order
B = {0, 1} with 0  1. B has natural operations _ = max and ^ = min. B is the most basic
example of a Boolean algebra.

Definition 3.3. A Boolean algebra is a partially ordered set (B,) with a least element 0, a
largest element 1 and the properties:

(1) Any x, y 2 B have a least upper bound x _ y and a greatest lower bound x ^ y.

6
Recall that symmetric means that 8x x  x, transitive that 8x, y, z x  y ^ y  z ! x  z and antisymmetric

that 8x, y x  y ^ y  x ! x = y.
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(2) _ and ^ are distribute over each other, i.e.

x _ (y ^ z) = (x _ y) ^ (x _ z)

x ^ (y _ z) = (x ^ y) _ (x ^ z)

(3) Every x 2 B has a complement, i.e., an element �x such that

x _ �x = 1

x ^ �x = 0

(B,) is called complete if for every subset X of B, a greatest lower bound inf(X) and a least
upper bound sup(X) exist.7

Conversely, one can also define  from ^, since x  y holds if and only if x ^ y = x.

Lemma 3.4. �x is unique.

Proof. Suppose that y, z are complements of x, i.e. both satisfy the properties of �x. Using
x _ y = 1 and x ^ z = 0, we have z = (x _ y) ^ z = (x ^ z) _ (y ^ z) = y ^ z, so z  y. Similarly
y  z. Thus y = z. ⇤

Example 3.5.

(1) The Boolean algebra {0, a,�a, 1} with 0 < a,�a < 1.
(2) The power set P(S) of a set S partially ordered by ✓ with _ = [, ^ = \, and � is

complementation.

Suppose that B is a subalgebra of P(S) for some set S. Then every x 2 S, all a 2 B with
x 2 a, are compatible, i.e. have nonempty intersection. In other words, they generate a filter (see
below). Stone’s representation theorem reconstructs S from B via filters on B.

Definition 3.6. Suppose that B is a Boolean algebra.

(1) A filter on B is a subset F of B with
(a) 1 2 F and 0 /2 F .
(b) If a, b 2 F , then a ^ b 2 F .
(c) If a 2 F and a  b, then b 2 F .

(2) An ultrafilter on B is a filter U on B such that for every a 2 B: a 2 U or �a 2 U .

It is easy to see that ultrafilters are precisely the maximal filters.
For every Boolean algebra B and any a 2 B, there exists an ultrafilter U on B with a 2 B. Such

an ultrafilter can be constructed by induction by going through an enumeration of all elements of
B. In the successor step, one has a filter F on B and a 2 B. One shows that 8 b 2 F a ^ b 6= 0 or
8 b 2 F (�a) ^ b 6= 0 holds. Otherwise there are b, b

0 2 F with a ^ b = (�a) ^ b
0 = 0. Then

0 = (a ^ (b ^ b
0)) _ (�a ^ (b ^ b

0)) = b ^ b
0 2 F.

But 0 /2 F , since F is a filter.

Theorem 3.7 (Stone’s representation theorem). Every Boolean algebra B is isomorphic to a
subalgebra of (P(S),✓) for some set S.

Proof sketch. The Stone space S(B) of B is defined as the set of ultrafilters on B. The basic open
sets are:

Na := {U 2 S(B) | a 2 U}
for a 2 B. S(B) is a zero-dimensional Hausdor↵ space. Moreover, it is compact, since it is
homeomorphic to a subspace of the product

Q
a2B 2 by sending an ultrafilter to its characteristic

function. Here 2 denotes the discrete space with two elements. It is easy to check that the image
is closed.

Q
a2B 2 is compact by Tykhonov’s theorem. ⇤

7
It su�ces that sup(X) exists for every subset X.
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3.3. Boolean-valued models. We first return to the previous example. Consider all Lebesgue
measurable subsets of R modulo null sets. I.e. let A  B if A\B is null and A ⇠ B if A  B  A.
Let [A] denote the ⇠-equivalence class of a Lebesgue measurable set A. Let B denote the Boolean
algebra of equivalence classes ordered by . Now consider the set of random variables in R, i.e.
Lebesgue measurable functions ⇠ : R ! R, as the underlying set of our structure. For any Lebesgue
measurable subset A of R, let J⇠ 2 AK := ⇠

�1(A) be the truth value of the statement “⇠ 2 A”.
How much structure of the reals can be carried over to this set? For example, note that the

random variables are not linearly ordered. Let ⇠+, ⇠� be characteristic functions or R+ and R�.
None is pointwise large than the other. Similarly, the set of random variables does not form a
field with the pointwise operations + and ·.

However, if we define the Boolean value

J' _  K := J'K _ J K,

then

J(⇠+  ⇠�) _ (⇠�  ⇠+)K ⇠ R = 1B.

So the set of random variables as a B-valued model (see the next definition) is in fact linearly
ordered by . One can similarly check that it is a field.

Problem 3.8. Show that the equivalence classes of Lebesgue measurable subsets of R equipped
with the partial order A  B if A \B is null form a complete Boolean algebra.

Definition 3.9 (Boolean-valued models). Suppose that B is a complete Boolean algebra and L
is a first-order language. A B-valued model M in the language L consists of an underlying set M ,
whose elements are called names, and an assignment of Boolean values Js = tK, JR(s0, ..., sn)K and
Jy = f(s0, ..., sn)K in B to atomic formulas with parameters s, t, s0, ..., sn 2 M . These assignments
must follow the laws of equality:

Js = sK = 1

Js = tK = Jt = sK

Js = tK ^ Jt = uK  Js = uK
^

i<n

Jsi = tiK ^ JR(~s)K  JR(~t)K

If the language includes functions symbols, then additionally:
^

i<n

Jsi = tiK ^ Jy = f(~s)K  Jy = f(~t)K

_

t2M

Jt = f(~s)K = 1.

Jt0 = f(~s)K ^ Jt1 = f(~s)K  Jt0 = t1K.

The requirements for functions assert that the equality axiom holds for functions and any
function takes a unique value.

One can then extend the Boolean values to all formulas by recursion on formulas:

J' ^  K = J'K ^ J K

J¬'K = ¬J'K

J9x'(x,~s)K =
_

t2M

J'(t,~s)K

It follows that J'_ K = J'K_ J K. Moreover, one can check by induction on ' that the general
equality axiom now has Boolean value 1:

J~s = ~t ^ '(~s) ! '(~t))K = 1.
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3.4. Turning Boolean-valued models into actual models. Suppose that M is a Boolean-
valued model in a language L and T is an L-theory, i.e. a set of L-sentences. By definition, M is
a model of T , denoted, M |= T , if J'K = 1 for all ' 2 T .

A Boolean-valued modelM can be turned into an actual model under an additional assumption.
M is called full if for every L-formula '(x, ~y) and ~s 2 M

n, there is some t 2 M such that
J9x'(x,~s)K = J'(t,~s)K.

Proposition 3.10. If a theory T has a full B-valued model M, then it has a model.

Proof. Let U be an ultrafilter on B. We define a model M/U by letting

M/U |= '(�0, . . . ,�n) () J'(�0, . . . ,�n)K 2 U

for an atomic formulas '(x0, . . . , xn) and �0, . . . ,�n 2 M. The same equivalence then holds for
all formulas by induction. The interesting case is

M/U |= 9x'(x,~�) () 9x 2 M M/U |= '(x,~�)

() 9x 2 M J'(x,~�)K 2 U

() J9x'(x,~�)K 2 U

The first equivalence holds by definition of satisfaction, the second by the induction hypothesis
and the last one holds by fullness. ⇤
Corollary 3.11. The following are equivalent for any full B-valued model:

(a) a  J'(�)K
(b) M/U |= '(�) for every ultrafilter U on B with a 2 U .

Proof. If a  J'(�)K and a 2 U , then J'(�)K 2 U , so M/U |= '(�). If a 6 J'(�)K, then
b := a \ J¬'(�)K 6= 0. Find an ultrafilter U on B with b 2 U . Then M/U |= ¬'(�). ⇤
Example 3.12 (Ultrapowers). Suppose that I is a set and Mi = (Mi, Ri) is an L-structure for
each i 2 I. Let B = P(I). The underlying set consists of all functions f 2 M :=

Q
i2I

Mi and
the Boolean values are defined as

J'(f0, ..., fn)K = {i 2 I | Mi |= '(f0(i), ..., fn(i))}
for atomic formulas '. Los’ theorem states that this equality holds for all formulas. This is a special
case of Remark 3.10, assuming this B-valued model is full. Why is it full? Let J := J9x'(x,~�)K =S

f2M
J'(f,~�)K. Then for each j 2 J , there exists some f(j) 2 Mj with Mj |= '(f(j),~�). Let

f(i) 2 Mi be arbitrary for i 2 I \ J . Then J'(f,~�)K = J .

3.5. Boolean-valued models of set theory. We describe how to define a B-valued class model
of set theory for any complete Boolean algebra B. The class of B-names, denoted V

B, is defined
by recursion: ⌧ is a B-name if ⌧ is a set of pairs (�, b), where � is a B-name and b 2 B. The atomic
Boolean values are defined by recursion with the use of an auxiliary relation symbol ✓.

J⌧ 2 �K =
_

(⌘,b)2�

J⌧ = ⌘K ^ b

J⌧ = �K = J⌧ ✓ �K ^ J� ✓ ⌧K
J⌧ ✓ �K =

^

⌘2dom(⌧)

(J⌘ 2 ⌧K ! J⌘ 2 �K)8

One then extends the Boolean value assignment by recursion to all formulas '(�0, . . . ,�n) in the
language of set theory as above for B-valued models. We still need to verify the axioms of equality
for Boolean-valued models:

Lemma 3.13. For all s, t, u 2 V
B:

(1) Js = sK = 1
(2) Js = tK = Jt = sK.
(3) Js = tK ^ Jt = uK  Js = uK.

8
It is easy to see that this equals

V
⇠(J⇠ 2 ⌧K ! J⇠ 2 �K). For each name ⌘, J⇠ 2 ⌧K =

W
h⌘,bi2⌧ J⌘ = ⇠K ^ b and

b  J⌘ 2 ⌧K. Since J⌧ ✓ �K is stronger than J⌘ 2 ⌧K ! J⌘ 2 �K, it is thus stronger than J⇠ 2 ⌧K ! J⇠ 2 �K.
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(4) (a) Js = tK ^ Ju 2 sK  Ju = tK.
(b) Js = tK ^ Js 2 uK  Jt = uK.

Proof. See handwritten proof in the lecture notes in the “notes” folder on teams. ⇤
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3.6. ZFC in V
B
. Fix a complete Boolean algebra B. We shall first show that V

B is a B-valued
model of ZF. The choice axiom follows later.9 It su�ces to show that the extension, union,
power set, infinity and foundation axioms and each instance of the replacement scheme hold with
Boolean value 1.

The extension axiom is true in V
B by definition of J� 2 ⌧K.

For the union axiom, take � 2 V
B. We show that

⌧ := {h⇠, a ^ bi | 9h⌘, ai 2 � : h⇠, bi 2 ⌘}
is a name for

S
�, i.e. J8x(x 2 ⌧ $ 9y 2 � x 2 y)K = 1. Recall that by definition, J8x(x 2 ⌧ $

9y 2 � x 2 y)K =
V

⇣2V BJ⇣ 2 ⌧K $ J9x 2 � ⇣ 2 xK. We fix ⇣ 2 V
B and show J⇣ 2 ⌧K = J9x 2

� ⇣ 2 xK. Recall that

J⇣ 2 ⌧K =
_

(⇠,b)2⌧

J⇣ = ⇠K ^ b =
_

(⌘,a)2�

_

(⇠,b)2⌘

J⇣ = ⇠K ^ a ^ b

J9x 2 � ⇣ 2 xK =
_

⇢

(J⇢ 2 �K ^ J⇣ 2 ⇢K) =
_

⇢

_

(⌘,a)2�

_

(⇠,b)2⇢

J⌘ = ⇢K ^ a ^ J⇣ = ⇠K ^ b

We obtain  by letting ⇢ = ⌘, and � since for any (⇠, b) 2 ⇢, J⌘ = ⇢K ^ J⇣ = ⇠K ^ b  J⇣ 2 ⌘K W
(⇠,c)2⌘

J⇣ = ⇠K ^ c.
For the power set axiom, suppose that ⌧ is a B-name. We show that

� = {h⌘, bi | ⌘ ✓ dom(⌧)⇥ B ^ b = J⌘ ✓ ⌧K}
is a name for the power set of ⌧ . We want to show J8x (x 2 � $ x ✓ ⌧)K = 1, i.e. for all names ⌫,
J⌫ 2 �K = J⌫ ✓ ⌧K. We have J⌫ 2 �K =

W
h⌘,bi2�

J⌫ = ⌘K ^ b =
W

h⌘,bi2�
J⌫ = ⌘ ^ ⌘ ✓ ⌧K  J⌫ ✓ ⌧K.

Conversely, consider the name

⌫
0 := {h⌘, bi | ⌘ 2 dom(⌧) ^ b = J⌘ 2 ⌫ \ ⌧K}

for any name ⌫. It is easy to check that ⌫0 is a name for ⌫ \ ⌧ , i.e. J⌫0 = ⌫ \ ⌧K = 1.10 Hence
J⌫ ✓ ⌧ ! ⌫ = ⌫

0K = 1. Since ⌫0 ✓ dom(⌧) ⇥ B, it follows that ⌫0 2 dom(�). We further have
J⌫0 2 �K � J⌫0 ✓ ⌧K by the definition of �.11 Thus J⌫  ⌧K  J⌫ 2 �K.

For the infinity axiom, suppose that ! is an inductive set (i.e. it is closed under +1) and let
� = !̌. We claim that � is a name for an inductive set. Since � is a check-name, we have

J8x 2 � (x+ 1 2 �)K =
^

n2!

Jň+ 1 2 �K,

so it su�ces that Jň+1 2 �K =
W

m2!
Jm̌ 2 ň+1K � J(n+1)ˇ= ň+1K equals 1. Since (n[ {n})ˇ=

ň [ {hň, 1i} by the definition of check-names, one can now verify J⇠ 2 (n+ 1)ˇ K = J⇠ 2 ň+ 1K as
required.

For the foundation axiom, take a name �. Let a = J� 6= ;K. Suppose that b = J8x 2 � 9y 2
x \ �K ^ a > 0. Let ⌘ be of least rank with J⌘ 2 �K ^ b > 0. We claim that b  J8x 2 ⌘ x /2 �K. It
su�ces that for any ⇠,

J⇠ 2 ⌘K ^ J⇠ 2 �K ^ b = 0.

Since
J⇠ 2 ⌘K =

_

h✏,ci2⌘

J⇠ = ✏K ^ c,

we have J⇠ = ✏K ^ J⇠ 2 �K ^ b  J✏ 2 �K ^ b = 0 as required.

9
While this could be proved directly, it is immediate from lemmas below.

10J⌫0 ✓ ⌫ \ ⌧K = 1 follows from J⌘ 2 ⌫0K =
W

h⇠,bi2⌫0J⌘ = ⇠K^ b =
W

⇠2dom(⌫0)J⌘ = ⇠K^ J⇠ 2 ⌫ \ ⌧K  J⌘ 2 ⌫ \ ⌧K.
J⌫ \ ⌧ ✓ ⌫0K follows from J⌘ 2 ⌫ \ ⌧K =

W
h⇣,bi2⌧ J⌘ = ⇣K ^ b ^ J⌘ 2 ⌫K 

W
⇠2dom(⌫0)J⌘ = ⇠K ^ J⇠ 2 ⌫ \ ⌧K, since

b  J⇣ 2 ⌧K.
11J⌫0 2 �K =

W
h⌘,bi2�J⌘ = ⌫0K ^ b  J⌫0 ✓ ⌫K, since b = J⌘ ✓ ⌧K.
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The replacement scheme is shown by separation and collection. (Replacement is equivalent
to their conjunction.) For the separation scheme, suppose that ⌧ is a name and '(x) is a formula.
We claim that

⇢ := {h�, bi | � 2 dom(⌧), b = J� 2 ⌧ ^ '(�)K}
is a name for the subset of ⌧ defined by '. For any name ⌘, J⌘ 2 ⇢K  J⌘ 2 ⌧K ^ J'(⌘)K by the
definition of ⇢. For the converse, recall that

J⌘ 2 ⇢K =
_

⇣2dom(⌧)

J⌘ = ⇣K ^ J⇣ 2 ⌧ ^ '(⇣)K

J⌘ 2 ⌧K =
_

h⇠,ai2⌧

J⌘ = ⇠K ^ a

by definition of ⇢. For each h⇠, ai 2 ⌧ ,

(J⌘ = ⇠K ^ a) ^ J'(⌘)K  J⌘ = ⇠K ^ J⇠ 2 ⌧ ^ '(⇠)K
as required.

The collection scheme states that for any set a and any formula '(x, y) such that 8x 2
a 9y '(x, y) holds, there exists some b such that 8x 2 a 9y 2 b '(x, y). Fix a name �. We
can let

⌧ := {h⌫, 1i | ⌫ 2 V↵ \ V
B}

for a su�ciently large ordinal ↵, so that all possible Boolean values realized by witnesses ⇠ with
'(�, ⇠) are realized by witnesses in V↵ \ V

B, using collection in V . In more detail, by definition

J8x 2 a 9y 2 b '(x, y)K =
^

⌘

J⌘ 2 �K !
_

⇠

J⇠ 2 ⌧K ^ J'(⌘, ⇠)K.

One can see as in footnote 8 that
V

⌘
can be equivalently replaced by

V
⌘2dom(�)

. Moreover,
J8x 2 a 9y '(x, y)K is the same but with J⇠ 2 ⌧K omitted. So it su�ces to choose ⌧ , ↵ as
above so that for any ⌘ 2 dom(�) and any ⇠ with J'(⌘, ⇠)K > 0, there is some ⇣ 2 V↵ with
J'(⌘, ⇣)K = J'(⌘, ⇠)K. Then J⇣ 2 ⌧K = 1 follows. Since there are only |B| many Boolean values,
such an ↵ exists by collection.
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3.7. V
B
is full. We want to check that V B is full so that V B

/U is a model of ZFC for any ultrafilter
U on B.

We use the following terminology for partial orders. A subset A of a partial order P is called a
chain if p  q or q  p for all p, q 2 A. We say that p, q 2 P are compatible (p k q) if there exists
some r  p, q and incompatible (p ? q) otherwise. A is called an antichain if any p 6= q in A are
incompatible. An antichain is maximal below b if 8p 2 A p  b and there is no antichain with
this property that properly extends A. It is maximal if it is maximal below 1.

Moreover, we call elements of a partial order conditions ; this reflects the fact that a  J'K says
that a is a su�cient condition for ' to hold, i.e. if U is an ultrafilter on B with a 2 U , then
V

B
/U |= '.
Recall that we call the elements of V B names. The next lemma shows how to combine several

names into one.

Lemma 3.14 (Mixing lemma). Suppose that A ✓ B is an antichain and h⌧a | a 2 Ai is a sequence
of names. Then there exists a name ⌧ such that a  J⌧ = ⌧aK for all a 2 A.

Proof. Let
⌧ = {h�, b ^ ai | h�, bi 2 ⌧a ^ a 2 A}.

The point is that this name looks exactly like ⌧a if we care only about conditions below a. (We
will see below that there is a more semantic way of deriving all kinds of equations like this; one
interprets �U recursively by only considering conditions in an ultrafilter U .)

Fix a 2 A. We must verify a  J⌧ ✓ ⌧aK and a  J⌧a ✓ ⌧K. Recall

J⌧ ✓ ⌧aK =
^

⌘2dom(⌧)

(J⌘ 2 ⌧K ! J⌘ 2 ⌧aK),

so we want a ^ J⌘ 2 ⌧K  J⌘ 2 ⌧aK. By definitions,

J⌘ 2 ⌧K =
_

h�,bi2⌧

J� = ⌘K ^ b =
_

a02A

_

h�,bi2⌧a0

J� = ⌘K ^ b ^ a
0

J⌘ 2 ⌧aK =
_

h�,bi2⌧a

J� = ⌘K ^ b.

Since A is an antichain, a ^ J⌘ 2 ⌧K =
W

h�,bi2⌧a
J� = ⌘K ^ b ^ a  J⌘ 2 ⌧aK.

Moreover, a  J⌧a ✓ ⌧K holds since a^J⌘ 2 ⌧aK  J⌘ 2 ⌧K is immediate from the definitions. ⇤
Lemma 3.15 (Fullness principle). V

B is full.

Proof. Consider 9x '(x,~⌧), where ~⌧ is a finite sequence of names.
By definition, the Boolean value b = J9x'(x,~⌧)K is the join of the set S = {J'(�,~⌧)K | � 2 V

B}.
Let D be the downwards closure of S. It is dense below b by the definition of b. Let A be a
maximal antichain below b with A ✓ D. Then

W
A = b. For each a 2 A, choose some �a with

a  J'(�a,~⌧)K. By the mixing lemma, find a name � such that a  J� = �aK for all a 2 A. Then
a  J'(�,~⌧)K for each a 2 A by the equality axioms. So b =

W
A  J'(�,~⌧)K.

Conversely, J'(�,~⌧)K 
W
S = b since J'(�,~⌧)K 2 S. ⇤
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3.8. Partial orders and their completions. This material can be found e.g. in [Jech: Set
theory, Theorem 7.13].

In this section, we show that any partial order P satisfying a mild condition (separativity) is
dense in a complete Boolean algebra B. It is easy to see that the notion of P-generic filter and
B-generic filter are equivalent. So in fact, the two approaches are in fact equivalent.

Partial orders are used instead of Boolean algebras in actual forcing constructions and to prove
properties of forcings such as chain conditions and closure.
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3.9. Large continuum. We have seen that we can assume M ✓ N are a class models of ZFC, M
is a transitive subclass of N , G is P-generic over M for some P 2 M and N = M [G] = {val(�, G) |
� 2 M is a P-name}, i.e. N is a P-generic extension of M . (Actually, we have seen this for
B(P)-names, but for every B(P)-name � there is a P-name ⌧ with J� = ⌧K = 1.) We will also write
�
G for val(�, G).
We will show that ¬CH is consistent. To this end, we want a generic extension M [G] such that

M [G] has at least !2 new reals and !2 is preserved as a cardinal. Work inM . Let Fun(X,Y ) denote
the set of finite partial functions from X to Y , ordered by reverse inclusion, i.e. p  q := p ◆ q.
Fix an infinite cardinal  and let

P := Fun(⇥ !, 2).

For each ↵ < , let
�↵ := {hň, pi | p(↵, n) = 1}.

Suppose that G is a P-generic filter over M .

Lemma 3.16. For any ↵ < � < , M [G] |= �
G

↵
6= �

G

�
.

Proof. Suppose that b := J�↵ = ��K > 0 in B(P). Since P is dense in B(P), there is some p  b in
P. Since p is a finite partial function, there exists some q  p in P with

q(↵, n) 6= q(�, n)

for some n 2 !. Assume q(↵, n) = 1 and q(�, n) = 0. By definition of val(�↵, G), we have in M [G]
that n 2 �

G

↵
, but n /2 �

G

�
. ⇤

Thus, if we choose  = !2 and both !1 and !2 remain cardinals in M [G], then M [G] |= ¬CH.
The function mapping ↵ < !2 to �

G

↵
is injective. Cardinal preservation will follow from the

countable chain condition (c.c.c.). A forcing P has the c.c.c. if it has no uncountable antichains.
(Equivalently, B(P) has no uncountable chains.) To show the c.c.c., we need a combinatorial
lemma:

Lemma 3.17. (�-system lemma) Suppose that S is an uncountable set consisting of finite sets.
Then there exists an uncountable family S0 ✓ S and a finite set r0 such that for all distinct
s, t 2 S0, s \ t = r0. S0 is called a �-system with root r0.

Proof. We can assume that S has size !1 and all elements of S have the same size n. Let
hs↵ | ↵ < !1i enumerate S. For each i < n, define fi : !1 ! !1 by letting fi(↵) be the ith element
of s↵.

Let k < n be least such that ran(fk) is unbounded in !1. Such a k has to exists, since otherwiseS
↵<!1

s↵ is countable and thus S would be countable. Note that for k < j < n, ran(fj) is also
unbounded.

There exists some � < !1 such that
S

i<k
ran(fi) ✓ �. Since there are only countably many

finite subsets of ↵, there exists a finite subset r0 of ↵ such that for uncountably many ↵ < !1,
{fi(↵) | i < k} = r0. Let I denote the set of ↵ with this property.

Since ran(fk) is unbounded in !1, we can construct by recursion a strictly uncreasing sequence
h↵� | � < !1i in I such that fk(↵0) > max(r0) and for all � < !1, fk(↵�) > max(s�0) for all
�
0
< �. Then S0 := {s↵� | � < !1} is a �-system with root r0. ⇤

Lemma 3.18. Suppose that P is a c.c.c. forcing in M and M [G] is a P-generic extension of M .
Then M and M [G] have the same cardinals.

Proof. Towards a contradiction, suppose that  < � are infinite cardinals in M and a P-name ḟ

such that b := Jḟ : ! � is a surjective functionK > 0.
For each ↵ <  and � < �, let b↵,� := Jḟ(↵) = �K ^ b. Then for each ↵ < ,

A↵ := {b↵,� > 0 | � < �}
is an antichain, so it is countable by the c.c.c. Since , � are cardinals and  < �, there exists
some � < � such that b↵,� = 0 for all ↵ < .

Suppose that H is a P-generic filter over M with b 2 H. Then in M [H], ḟH(↵) 6= � for all
↵ < . So ḟ

H is not surjective onto �. This contradicts the fact that M [H] ⇠= M
B(P)

/H and
b 2 H. ⇤
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The next lemma is an application of the �-system lemma.

Lemma 3.19. For any cardinal , Fun(, 2) has the c.c.c.

Proof. Towards a contradiction, suppose that A is an uncountable antichain in P. Let S :=
{dom(f) | f 2 A}. S is an uncountable set of finite subsets of . By Lemma 3.17, there exists an
uncountable �-system S0 ✓ S with root r. For each s 2 S0, pick some ps 2 A with dom(ps) = s.
Let A0 := {ps | s 2 S0}.

Since A0 is infinite, there exist some p 6= q in A0 with p�r = q�r. Then p and q are compatible,
as dom(p) \ dom(q) = r. ⇤

Note that Fun(⇥ !, 2) is isomorphic to the finite support product
Q

i2
Fun(!, 2), where

Y

i2I

Pi

is equipped with the coordinatewise partial order, where each Pi is a partial order.
One can show that a generic filter for this product is of the form

Q
i2I

Gi, where each Gi is
Pi-generic over M .
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3.10. The continuum hypothesis. Gödel showed in 1940 that the continuum hypothesis is
consistent with the axioms of ZFC. To show this, he defined the constructible universe L. L is the
minimal transitive class model of ZFC that contains all ordinals, i.e. L ✓ M for all such models
M . Gödel showed that L satisfies the continuum hypothesis CH.

One can also easily find a forcing P that forces CH, i.e. JCHKB(P) = 1.
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3.11. The axiom of choice in V
B
. We omitted the axiom of choice above and only showed ZF

in V
B. To show that AC holds in V

B, it su�ces to show that it holds in M [G], where G is P-generic
over M for some forcing P. (V B believes that it is of this form.)

It su�ces that in M [G], every set �G is wellordered. It su�ces that �G is an image of a
wellordered set. But �G is a subset of {⌧G | ⌧ 2 dom(�)} and this an image �. Moreover, � can
be wellordered since � 2 M and M is a model of ZFC, so the wellordering theorm holds in M .
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3.12. General remarks about forcing.

Remark 3.20. If G is P-generic over M , then M [G] is the least model N of ZFC with M ✓ N and
G 2 N . I.e. M [G] ✓ N for any such model N . To see this, note that any such model N can
compute val(�, G) for any P-name � 2 M . Thus M [G] ✓ N .

Recall that a forcing is by definition a partial order (i.e. a partially ordered set). Sometimes
one means more generally a quasiorder, i.e. a relation that satisfies the conditions on partial orders
except antisymmetry: x  y ^ y  x ! x = y.

Recall that a forcing P is called separative if 8p, q p 6 q ! 9r  p : r ? q. If P is separative,
then P is isomorphic to a dense subset of B(P).

Remark 3.21. Suppose that P and Q are separative forcings. We say that P and Q are equivalent
if B(P) ⇠= B(Q), where ⇠= denotes isomorphism. In particular, P and B(P) are equivalent. More
generally, this holds if P is a dense subset of Q: one can check that for any regular open subset A
of P, its upwards closure {q 2 Q | 9p 2 A p  q} is a regular open subset of Q and for any regular
open subset B of Q, B \ P is a regular open subset of P.

Working in a model M of ZFC, suppose that P is a dense subset of Q. If G is a P-generic filter
over M , then the upwards closure H := {q 2 Q | 9p  q p 2 G} is Q-generic over M as well.
Conversely, if H is Q-generic over M , then G := H \ P is P-generic over M . Thus P and Q give
rise to the same generic extensions. If P and Q are equivalent this holds as well, since both give
rise to the same extensions as B(P).

The forcing relation � is defined by p � '(�0, . . . ,�n) if p  J'(�)K, where p 2 P, � is a P-name
and '(x0, . . . , xn) is a formula. Note that the forcing relation for P talks only about P, not about
the Boolean completion.

Remark 3.22. We do not need the Boolean-valued model V B(P) to prove facts about forcing with
P. Instead, assume that M is a transitive class model of ZFC with P 2 M such that for every
p 2 P, there exists a P-generic filter over M . We know from above that there exists such a model
M that is elementarily equivalent to V .

Then p � '(�) () p  J'(�)K () M
B(P)

/G |= '(�) for any B(P)-generic filter G over M

() M [G] |= '(�) for any P-generic filter G over M . This follows from Corollary 3.11 and the
fact that MB(P)

/G ⇠= M [G] if G is a P-generic filter over M . The equivalence

p � '(�) () M [G] |= '(�) for any P-generic filter G over M

is known as the forcing theorem.

Remark 3.23. A remark about the presentation. One can alternatively present forcing by first
defining M [G] and proving ZFC in M [G] and the forcing theorem for M as in Kunen’s book. Then
one has to argue why one can assume that M is countable, in order to know that generic filters
over M exist. Note that there might not exist any countable models of ZFC.
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3.13. Cohen forcing. We want to understand Cohen and random forcing in more detail. Cohen
forcing C is defined as Fun(!, 2), the set of finite partial functions p : ! ! 2, ordered by inclusion.
Instead, we can work with the dense subforcing consisting of all p : n ! 2 for any n 2 !.

Suppose that M is a model of ZFC and G is Cohen generic over M . Let

xG =
[

G =
[

p2G

p.

Since G is a filter, for any p, q 2 G, we have p [ q 2 G. Thus xG =
S

G : ! ! 2 is a partial
function.

We claim that xG : ! ! 2 is a total function. To see this, let

Dn := {p 2 P | n 2 dom(p)}
for each n 2 !. Since Dn is dense, G \Dn 6= ; and hence dom(xG) = !.

xG is called a Cohen real over M .

A real is by definition a function f : ! ! 2 or a subset of !.

We claim that one can reconstruct G from xG. Let x = xG and

Gx := {p 2 P | p ✓ x}.
We claim that G = Gx. The inclusion ✓ is obvious. To see that ◆ holds, suppose that p 2 Gx,
i.e. p ✓ x. For each n 2 dom(p), find pn 2 G with n 2 dom(pn). Then q :=

S
n2dom(p)

pn 2 G,
since G is a filter. Since p ✓ q, we have p 2 G.

It follows that the Cohen real xG generates M [G] in the sense that M [G] is the least transitive
model N of ZFC with M ✓ N and xG 2 N .

3.14. Characterising Cohen reals. As before, suppose that M is a transitive model of ZFC. We
want to characterise Cohen reals over M . On the way, we also determine the Boolean completion
B(C).

The Cantor space 2! is equipped with the product topology. The basic open sets are

Nt = {x 2 2! | t ✓ x}
for t 2 2<!.

A subset A of 2! is called nowhere dense if for every open subset U of 2!, there is some open
subset W of U that is disjoint from A. A subset A of 2! is called meager if A =

S
n2!

An, where
each An is nowhere dense. (I.e. the meager sets form the �-ideal generated by the nowhere dense
sets.) A is called comeager if its complement if meager.

If A is nowhere dense, then its closure is also nowhere dense. Therefore, any comeager set
contains a subset of the form

S
n2!

Un, where each Un is open dense.

The Borel sets form the smallest collection of subsets of 2! that contains all open sets and is
closed under forming complements and countable unions.
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Lemma 3.24. (Baire category theorem) Any nonempty open set is non-meager.

Proof. Suppose that U 6= ; is an open subset of 2!. Towards a contradiction, suppose that
hUn | n 2 !i is a sequence of open dense sets with U \

T
n2!

Un = ;.
We construct a strictly increasing sequence htn | n 2 !i in 2<! as follows. Pick some t with

Nt ✓ U . Since Un is open and dense, pick some t0 ◆ t with Nt0 ✓ U0.
Given tn, pick some tn+1 ◆ t with Ntn+1 ✓ Un+1.
Then x :=

S
n2!

tn 2 U \
T

n2!
Un, but this set is empty. ⇤

A subset A of 2! has the property of Baire if there exists some open set U such that

A4U := (A \ U) [ (U \A)

is meager. In this case, one also writes A =⇤ U .

Lemma 3.25. The collection of all subsets of 2! with the property of Baire forms a �-algebra,
i.e. it contains ; and 2! and is closed under countable unions and complements.

Proof. For countable unions, suppose that A =
S

n2!
An and for each n 2 !, Un is open with

An =⇤ Un. It is easy to see that A =⇤
S

n2!
Un.

For complements, suppose that U is open with A =⇤ U . Let W = 2! \ cl(U), where cl(U)
denotes the closure of U . Then U [ W is open dense, so its complement is nowhere dense and
thus meager. Hence 2! \A =⇤ 2! \ U =⇤ W . ⇤

Since all open sets have the property of Baire by definition, it follows that every Borel set has
the property of Baire.

Let Q denote the set of all Borel subsets of 2!. For A,B 2 Q, let A  B if A \ B is meager.
Let A ⇠ B if A  B and B  A.

Exercise 3.26. Q/⇠ is a complete Boolean algebra.

It is easy to see that Q/⇠ is a Boolean algebra. For suprema, take a countable subset X =
{[An] | n 2 !} of Q. One can show that sup

A2X
[A] = [

S
n2!

An]. For an uncountable subset X
of Q, one a sequence hAn | n 2 !i with [An] 2 X such that for all A with [A] 2 X and all n 2 !,
we have that A \

S
n2!

An is meager. Then sup(X) = [
S

n2!
An].

Let Q0 denote the set of all non-meager Borel subsets of 2!.
We claim that C = Fun(!, 2) = 2<! is isomorphic to a dense subset of Q0/⇠. To see this, we

identify t 2 C with the ⇠-equivalence class [Nt] in Q0/⇠. The order on C and its image in Q0/⇠
is the same by the Baire category theorem.

To see that C (with this identification) is dense in Q0/⇠, take any A 2 Q0. Since A has the
property of Baire, there exists an open set U with A =⇤ U . Since A is non-meager, U is nonempty.
Find some t 2 2<! with Nt ✓ U . Then Nt  A.
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To characterise Cohen reals, we work with Borel codes. A Borel code for a Borel set B is some
a 2 2! that codes how A is built up from basic open sets Nt. One writes Ba for the Borel set
coded by a.

To define Borel codes, fix a bijective function f : ! ! ! ⇥ !. For any x 2 2! and n 2 !, let
xn 2 2! denote the function with xn(i) = x(n, i) for all i 2 !.

Fix an enumeration ~t = hti | i 2 !i of 2<!. Suppose that a 2 2!. We write a ⌘ n if a is a
constant sequence with value n.

• a codes Ntn if a0 ⌘ 0 and a1 = h0, . . . , 0, 1, 1, . . . i = 0na1!.
• a codes 2! \Bb if a0 ⌘ 1 and a1 = b.
• a codes

S
n2!

Ban if a0 ⌘ 2 and an+1 = bn for all n 2 !.

An element of 2! is called a Borel code if it is generated by the above steps.

One can now check (see e.g. [Jech: Set Theory, Lemma 26.4):

Lemma 3.27. The following are equivalent for a real x:

(a) x is a Cohen real over M .
(b) x 2 Ba for every Borel code a 2 M such that Ba is comeager.

This involves a bit of work, for example one needs to show that for a Borel code a and a real
x, the statement “x 2 Ba” is absolute between transitive models M , N of ZFC that contain both
a and x. This can be shown by induction on the Borel rank.

It follows immediately from the definition the following condition characterises Cohen reals x:
x 2

S
i2!

Nti for every sequence ~t = hti | i 2 !i such that
S

i2!
Nti is an (open) dense subset of

2!.
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3.15. Random forcing. Again, we work with the Cantor space 2!. (One could also work with
the real line.)

Let µ denote the uniform measure on 2!. I.e. µ is the completion of the unique measure µ on
the Borel subsets of 2! with µ(Nt) = 2�|t| for all t 2 2<!.

Let Q denote the set of all Borel subsets of 2!. For A,B 2 Q, let A  B if A \ B is null (i.e.
has measure 0). Let A ⇠ B if A  B and B  A.

Exercise 3.28. Q/⇠ is a complete Boolean algebra.

(This was done in one of the exercises.) For a countable subset X = {[An] | n 2 !} of P,
sup

A2X
[A] = [

S
n2!

An]. For an uncountable subset X of P, one fills up the measure by countably
many sets A with [A] in X and apply the countable case.

Let Q0 denote denote the set of all Borel subsets of 2! of positive measure. Random forcing Q
is defined Q0/ ⇠. Let [A] denote the equivalence class of A.

Suppose that M is a transitive model of ZFC. Let PM 2 M denote random forcing as defined
in M . We will simply write P for PM . Suppose that G is P-generic over M . Let

xG =
[

Nt2G

t.

It is easy to see that xG : ! ! 2 is a well-defined function. For example, it is total since for each
n 2 !, the set {Nt | |t| = n} is dense in P.

xG is called a random real over M .

We claim that xG generates M [G] (as for Cohen forcing). Let x = xG. How can we reconstruct
G from x? Let

Gx := {A 2 P | lim
n!1

µ(A \Nx�n)
µ(Nx�n)

= 1}.

I.e. A 2 Gx if and only if x is a density point of A. Clearly Gx is a filter. Note that by Lebesgue’s
density theorem, almost all elements of A are density points of A.

Note that in general, every P-generic filter G over M is maximal. To see this, suppose that
there exists some A 2 P \G such that H = G [ {A} generates a filter. Working in M , let X ✓ P
be a maximal antichain in P with A 2 X. Since G is P-generic over M , pick some B 2 G \ X.
Since X is an antichain and H is a filter, it follows that A = B 2 G.

Claim. G = Gx.

Proof. It su�ces to show that G ✓ Gx. Towards a contradiction, suppose that for some A 2 G,
� := limn!1

µ(A\Nx�n)
µ(Nx�n) < 1. Pick some ✏ with � < ✏ < 1.

Pick some n0 such that for all n � n0,
µ(A\Nx�n)
µ(Nx�n) < ✏. Let t0 := x�n0. Since A,Nt0 2 G, we

have A
0 := A \Nt0 2 G.

Now let

D :=

⇢
B 2 P | B \A

0 = ; _
✓
9t ◆ t0 (B ✓ A

0 \Nt ^
µ(B)

µ(Nt)
> ✏)

◆�

D is dense in P by Lebesgue’s density theorem.12 Pick some B 2 G \D. Since A
0
, B 2 G, we

have B ✓ A
0 and there exists some t 2 2<! as in the definition of D. We have Nt 2 G, since

B 2 G.

12
It su�ces to find a single density point.
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We have µ(B)

µ(Nt)
> ✏. Since B ✓ A \Nt,

µ(A\Nt)

µ(Nt)
> ✏. But this contradicts the choice of n0 and

t0. ⇤

3.16. Characterising random reals. Suppose that M is a transitive model of ZFC.
As for Cohen reals, one can show (see e.g. [Jech: Set Theory, Lemma 26.4):

Lemma 3.29. The following are equivalent for a real x:

(a) x is random over M .
(b) x 2 Ba for every Borel code a 2 M with µ(Ba) = 1.

3.17. Cohen reals versus random reals. We can separate Cohen and random extensions as
follows.

There exists a partition 2! = A [ B
13 such that A has measure 1 and B is comeager. To see

this, it su�ces to find a dense open (hence comeager) subset Cn of 2! of measure  1

2n
for any

n 2 !. Then C :=
T

n2!
Cn is a comeager null set.

We construct Cn as follows. Let hqi | i 2 !i enumerate a countable dense subset of 2!. Let Ui

be an open set containing qi with µ(Ui) < ✏i, where
P

i2!
✏i  1

2n
. Let

Cn :=
[

i2!

Ui

It follows that a Cohen real over M is never random over M and conversely.
One can in fact separate Cohen extensions from random extensions in the following sense: a

Cohen extension M [G] is never equal to a random extension M [H]. For example, one can show
that a Cohen real over M does not add any random real over M and conversely. One can also show
that the set of ground model reals has di↵erent properties in Cohen versus random extensions.

13
A partition means that 2

!
= A [B and A and B are disjoint.
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