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Variants of the ccc

We aim for:

• A variant of the ccc the preserves cardinals and cofinalities
• An iteration theorem this variant
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Variants of the ccc

The ZFC argument why a ccc (ω1-cc) forcing preserves ω1 uses both
regularity of ω1 and the existence of maximal antichains:

• Suppose 1 forces that ḟ : ω → ωV
1 is surjective.

• Pick a maximal antichain of pin for i ∈ ω such that pin ⊩ ḟ(n) = αi
n.

• Then ran(ḟ) is bounded by supn,i∈ω αi
n < ω1.

In ZFC, a forcing has the κ-cc if there exist no antichains of size κ.
However, there are other equivalent formulations.
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Variants of the ccc

Definition (Karagila, Schweber)
• ccc1 : Every maximal antichain in P is countable.

• ccc2 : Every antichain in P is countable.

• ccc3 : Every predense subset of P contains a countable predense subset.

Moreover, ccc∗i means ccci restricted to wellordered antichains, or predense subsets,
of P.

• These notions are equivalent for well-orderable forcings.

Karagila and Schweber showed that the implications

ccc3 ⇒ ccc2 ⇒ ccc1

are provable in ZF, but none of these implications can be reversed in ZF+ DC.
Moreover, ccc2 forcings can collapse ω1 .

Exercise
There exists a ccc∗2 forcing collapsing ω1 if there is no ω1-sequence of distinct reals.
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Variants of the ccc

The following theorem of Bukovsky gives us a new variant of the ccc.

Theorem (Bukovsky)
Suppose that V ⊆ W are models of ZFC. Then W is a generic extension of V by a ccc
forcing if and only if for every x ∈ V and f : x → V in W, there exists a function g : x → V
such that

1. V |= |g(u)| < ω1 for all u ∈ x, and

2. W |= f(u) ∈ g(u) for all u ∈ x.

Their theorem holds for the κ-cc for other regular κ as well.

Lemma (Karagila, Schweber)
ccc3 implies Bukowsky’s condition.

Problem (Karagila, Schweber)
Does Bukowsky’s condition imply ccc3?
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Variants of the ccc

Proposition (Karagila, Schweber)
If P satisfies Bukovský’s condition, then P preserves any cardinal κ > ω1. If ω1
is regular, then it is not collapsed.

Proof sketch. Suppose that κ < λ are cardinals and f : κ → λ is a surjective
function in V[G].

Pick some F : κ → [λ]<ω1 such that f(α) ∈ F(α) for all α < κ. Since f is
surjective,

∪
α<κ F(α) = λ.

But
∪

α<κ F(α) has size at most κ · ω1 = κ.

If ω1 is regular, κ = ω and λ = ω1, then
∪

n<ω F(n) is countable.

Problem (Karagila, Schweber)
Is it consistent that a ccc3 forcing collapses ω1?

The above variants of the ccc do not seem to suffice.

6



Linked forcings

We’d like to isolate a variant of the ccc that includes all σ-linked forcings.

Exercise
σ-linked forcings preserve all cardinals.

Definition
A forcing P is σ-linked (ω-linked) if there exists a (linking) function f : P → ω such that
for all p, q ∈ P:

f(p) = f(q) ⇒ p ∥ q.

P is split into countably many pieces, each one consisting of pairwise compatible
conditions.

The definition of κ-linked is analogous.

Example
Hechler forcing is σ-linked:

H := {(s, f) | s ∈ ω<ω , f ∈ ωω , s ⊆ f}

where (t, g) ≤ (s, f) if s ⊆ t and f(n) ≤ g(n) for all n ∈ ω.

Every σ-linked forcing satisfies ccc2 .

Problem
Does every σ-linked forcing satisfy ccc3?
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Linked forcings

The definition of κ-linked could say

p⊥q ⇒ f(p) ̸= f(q).

We equip Ord with the discrete partial order =. This suggests a
generalisation of κ-linked relative to a forcing Q:

Definition
P is Q-linked if there exists a ⊥-homomorphism f : P → Q, i.e., such that for
all p, q ∈ P

p⊥q ⇒ f(p)⊥f(q).

In ZFC, if P is Q-linked and Q is ccc, then P is ccc.
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Linked forcings

Exercise
Well-ordered c.c.c. forcings preserve cardinals.
(To see this, work in HOD with the relevant parameters.)

C := {p | p : n → 2, n ∈ ω} denotes Cohen forcing and Cκ the finite support product
of κ many copies. They are well-ordered. This goes further:

Lemma
Suppose that P is Q-linked and Q is well-ordered and c.c.c. Then P preserves all
cardinals.

Proof sketch. Suppose that 1P ⊩ ḟ : ω → ω̌1 is surjective.

Let g : P → Q be a ⊥-homomorphism. Define q ⊩∗ φ⇔ ∃p f(p) = q ∧ p ⊩ φ.

• If q ⊩∗ φ, q′ ⊩∗ ψ and φ, ψ are contradictory, then q⊥q′ , since

p ⊩ φ ∧ p′ ⊩ ψ ⇒ p⊥p′ ⇒ f(p)⊥f(p′).

• Let An be a maximal antichain of q ∈ Q with q ⊩∗ “ḟ(n) = α“

• This can be done in M := HOD{P,Q,ḟ} , since Q ⊆ M.

• In M, ωV
1 is regular,

∪
n∈ω An is countable and ωV

1 ≤∗ ∪
n∈ω An .
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Linked forcings

Exercise
Let Pα denote α with the discrete partial order. Then

∏
α<ω1

Pα collapses ω1 .

We therefore need a uniformity requirement on an iteration.

A product or iteration of σ-linked forcings is called uniform if it comes with a
sequence of names for linking functions.

Theorem
Any uniform finite support iteration of σ-linked forcings of length κ is Cκ-linked.

Hence cardinals are preserved.

Problem
Do Cohen and Hechler models over V have different theories?

• A Cohen model is a Cκ-generic extension for some κ ≥ ω2 .

• A Hechler model is obtained by a finite support iteration of H of some length
κ ≥ ω2 .

Woodin’s argument that Cohen and random models have different theories uses Truss’
result that Cohen and random reals don’t commute.
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Linked forcings

Proposition (cont.)
Any uniform finite support iteration of σ-linked forcings of length κ is
Cκ-linked.

Proof idea. Let ⟨Pα, Ṗα, ḟα | α < κ⟩ denote such an iteration, where ḟα is a
Pα-name for a σ-linking function for Ṗα.

Show that the set P̃ of all p ∈ Pκ such that for all α ∈ supp(p), p↾α decides
ḟα(p(α)), is dense.

Use the values of these functions to read off a ⊥-homomorphism from P̃ to
the set Fun<ω(κ, ω) of finite partial functions p : κ → ω.

Fun<ω(κ, ω) can be densely embedded into Cκ.
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Narrow forcings

The following is just the ccc∗2 for B(P).

Definition
P is called (ω, 1)-narrow if all partial ∥-homomorphisms f : P ⇀ Ord have
countable range.

• A partial ∥-homomorphism f corresponds to a function on the set D all
p ∈ P deciding a statement, for instance p ⊩ ġ(n) = αp. f sends p ∈ D
to αp.

• A partial ∥-homomorphism f can be thought of a generalised antichain
consisting of “blocks“ f−1(α). Different blocks are incompatible.

• In a complete Boolean algebra, a partial ∥-homomorphism corresponds
to an antichain, since subsets A and B of P are elementwise
incompatible if and only if sup(A) is incompatible with sup(B).

However, when trying to prove cardinal preservation via a function
ḟ : ω → ω1, an ω-sequence of such homomorphisms appears.

This is captured by a uniform version of ccc∗2 for many homomorphisms. 12



Narrow forcings

Definition
1. Suppose that ν is an ordinal.

P is called (ω, ν)-narrow if for any sequence f⃗ = ⟨fi | i < µ⟩ of partial
∥-homomorphisms fi : P → Ord, where µ ≤ ν ,

|
∪
i<µ

ran(fi)| ≤ |max(ω, µ)|.

2. P is called ω-narrow or just narrow if it is (ω, ν)-narrow for all ν .

Exercise
(ω, 1)-narrow implies (ω, ν)-narrow for all ν ≥ ω1.
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Narrow forcings

Lemma
Every (ω, 1)-narrow forcing P preserves all cardinals and cofinalities ≥ω2.

Proof sketch. Let λ ≥ ω2 be a cardinal.

Suppose that µ < λ is a cardinal and p ⊩P “ḟ : µ → λ is surjective“.

• For each α < µ, let Dα be the set of q ≤ p deciding ḟ(α).

• Let fα : Dα → λ send q to the unique β < λ with q ⊩ ḟ(α) = β.

• Each fα is a partial ∥-homomorphism.

Since P is (ω, 1)-narrow, otp(ran(fα)) < ω1 for each α < µ. Hence

|
∪
α<µ

ran(fα)| ≤ |max(ω1, µ)| < λ.

But
∪

α<µ ran(fα) = λ.

A similar argument works for cofinalities.
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Narrow forcings

Lemma
Every narrow forcing P preserves all cardinals and cofinalities.

Proof. It suffices to show that P preserves ω1.

Suppose that p ⊩P “ḟ : ω → ω1 is surjective“.

• For each n < ω, let Dn denote the set of q ≤ p deciding ḟ(n).

• Let fn : Dn → ω1 send q to the unique β < ω1 with q ⊩ ḟ(n) = β.

• Since P is narrow, we have |
∪

n<ω ran(fn)| ≤ ω. But
∪

n<ω ran(fn) = ω1.

A similar argument works for preserving cofinality ω1.
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Narrow forcings

Exercise
Every σ-linked forcing is (ω, 1)-narrow. (Uses the next lemma.)

Lemma
If Q is (ω, 1)-narrow and f : P → Q is a ⊥-homomorphism, then P is (ω, 1)-narrow.

Proof. Suppose that g : P⇀ Ord is a partial ∥-homomorphism.

Let D := ran(f) and define h : D → Ord as follows.

• For all p, r ∈ P with f(p) = f(r), we have g(p) = g(r), since f is a
⊥-homomorphism and g is a ∥-homomorphism.

• For f(p) = q ∈ D, we can thus define h(q) := g(p).

We claim that h is a partial ∥-homomorphism.

• Suppose that q, s ∈ D with f(p) = q, f(r) = s and q ∥ s.
• Since f is a ⊥-homomorphism, p ∥ r.
• Since g is a ∥-homomorphism, h(q) = g(p) ∥ g(r) = h(s) as desired.

Since ran(g) = ran(h) and Q is (ω, 1)-narrow, the claim follows.
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Narrow forcings

We need a stronger variant of narrow and a uniformity requirement for an
iteration.

Definition
P is called uniformly narrow if there exists a function G that sends each
partial ∥-homomorphism f : P ⇀ Ord to an injective function
G(f) : ran(f) → ω.

A uniform iteration comes with a sequence of functions Gα.

Theorem
A uniform iteration of uniformly narrow forcings with finite support is again
uniformly narrow.

Example
One can iterate combinations of Cκ, σ-linked forcings such as Hechler
forcing or eventually different forcing and (as we see later) random algebras,
while preserving cardinals and cofinalities.
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Narrow forcings

Theorem (cont.)
A uniform iteration of uniformly narrow forcings with finite support is again
uniformly narrow.

Proof. Let P⃗ = ⟨Pα, Ṗβ , ġβ | α ≤ δ, β < δ⟩ denote the iteration.

We construct a sequence ⟨Gγ | γ ≤ δ⟩ of functions by recursion on γ ≤ δ

from P⃗ and θ, where Gγ witnesses that Pγ is uniformly narrow.

Case. γ is a successor.

Suppose that γ = β + 1 and Gβ has been constructed. Let f : Pβ ∗ Ṗβ ⇀ Ord
be a partial ∥-homomorphism. and

ḟ := {((q̇, α̌)•,p) | f(p, q̇) = α}.

Claim
1Pβ forces that ḟ is a partial ∥-homomorphism on Ṗβ .
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Narrow forcings

ḟ := {((q̇, α̌)•,p) | f(p, q̇) = α}.

Claim (cont.)
1Pβ forces that ḟ is a partial ∥-homomorphism on Ṗβ .

Proof. Suppose that G is Pβ-generic over V.

In V[G], take q0, q1 ∈ ṖG
β with ḟG(qi) = αi for i < 2. Suppose that q0∥q1.

• There exist q̇i with q̇G
i = qi and pi ∈ G with ((q̇i, α̌i)

•,pi) ∈ ḟ for i < 2.

• Since q0∥q1, some p ∈ G forces q̇0∥q̇1.

• Since we can assume p ≤ p0, p1, we have (p0, q̇0)∥(p1, q̇1).

• α0 = f(p0, q̇0) = f(p1, q̇1) = α1, since f is a ∥-homomorphism.
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Narrow forcings

Claim (cont.)
1Pβ forces that ḟ is a partial ∥-homomorphism on Ṗβ .

By the claim,
1 ⊩Pβ ġβ(ḟ) : ran(ḟ) → ω is injective.

We can read off a Pβ-name ḣ for a function extending ġβ(ḟ)−1 . Then

1 ⊩Pβ ḣ : ω → ran(ḟ) is surjective.

For each n < ω, let Dn denote the set of all p ∈ Pβ that decide ḣ(n).

Let hn : Dn → Ord, where hn(p) is the unique δ such that p ⊩ ḣ(n) = δ.
hn is a ∥-homomorphism.

Since Gβ witnesses that Pβ is uniformly narrow, ⟨Gβ(hn) | n < ω⟩ consists of injective
functions Gβ(hn) : ran(hn) → ω.

Glue them to an injective function i :
∪

n<ω ran(hn) → ω.

Since 1P ⊩ ran(ḟ) ⊆
∪

α<θ ran(hα), ran(f) ⊆
∪

α<θ ran(hα) by the definition of ḟ.

Thus i↾ran(f) → θ is injective. Let Gγ(f) := i↾ran(f).
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Narrow forcings

Case. γ is a limit.

Suppose that f : Pγ ⇀ Ord is a partial ∥-homomorphism.

It suffices to show HODP⃗,f |= ran(f) ≤ θ. Then take the least injective function
Gγ(f) : ran(f) → θ in HODP⃗,f . Work in HODP⃗,f .

Otherwise ran(f) > θ. We can assume ran(f) = θ+ by restricting f.

Let sα ∈ [γ]<ω for α ∈ ran(f) be least in [Ord]<ω such that there exists some p ∈ Pγ

with support sα and f(p) = α. Let s⃗ = ⟨sα | α ∈ ran(f)⟩.

We can assume:
• All p ∈ Pγ with f(p) = α have support sα .
• s⃗ forms a ∆-system with root r.

Fix γ′ < γ such that α+ 1 < γ0 for all α ∈ r. Let D := {p↾γ′ | p ∈ dom(f)} be the
projection of dom(f) to Pγ′ .

Let g : D → Ord, where g(p) := α if
∃q ∈ dom(f) (q↾γ′ = p ∧ f(q) = α)

g well-defined by the next claim.
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Narrow forcings

Recall g : D → Ord, g(p) := α if ∃q ∈ dom(f) (q↾γ′ = p ∧ f(q) = α).

Claim
If u, v ∈ dom(f) with u↾γ′ = v↾γ′ = p ∈ D, then f(u) = f(v).

Claim
g : Pβ ⇀ Ord is a partial ∥-homomorphism.

Claim
ran(f) = ran(g).

The inductive hypothesis for γ′ yields an injective function Gγ′ (g) : ran(g) → θ. Since
Gγ′ , g ∈ HODP⃗,f , we have HODP⃗,f |= ran(f) = ran(g) ≤ θ, contradicting the
assumption.

We’re done!
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A counterexample with ccc2

The next result uses a standard technique for symmetric models.

Let L be a first-order language and M an L-structure. Suppose that
G ⊆ Aut(M) is a group and I an ideal of subsets of M.

• A subgroup of G is called large if it contains fix(A) = {π ∈ G | π↾A = id}
for some A ∈ I .

• A subset X of M is called stable if there exists a large subgroup H of G

such that π[X] = X for all π ∈ H .

Theorem (Karagila, Schweber)
In a model of ZFC, let L, M, G and I be as above. There is a symmetric
extension of the universe in which there exists an isomorphic copy N of M
such that every subset of Nk in the symmetric extension is a stable
isomorphic copy of a subset of Mk.

In addition, we can require:

• DC<κ holds in the extension, if I is <κ-complete.

• The extension has no new λ-sequences for any prescribed cardinal λ.
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A counterexample with ccc2

Theorem (Karagila, Schweber)
It is consistent with ZF+ DC that there is a ccc2 forcing which collapses ω1.

Proof sketch. We construct a symmetric model over a model of ZFC. Let P
denote Add(ω, ω1) without 1. P is productively c.c.c.

P∞ :=
⊕

⟨n,α⟩∈ω×ω1
Pn,α is the lottery sum, where each Pn,α ∼= P.

Let G act on each Pn,α individually for countably many ⟨n, α⟩ at the same
time. Let I be the ideal of countable subsets of P∞.

We get a symmetric extension M of V and working in M, an isomorphic copy
of P∞, such that M is a model of DC and ω1 remains uncountable in M.

We use the same notation for the copies.

For any subset A of Pk
∞, there is a countable α < ω1 such that if α ≤ β and

p(i) ∈ Pn,β for any p ∈ Ak, i < k and n ∈ ω, then any condition q obtained by
replacing p(i) by an arbitrary condition in Pn,β is in A.
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A counterexample with ccc2

In N, Q consists of pairs ⟨t, b⃗⟩ such that:

1. t ∈ ω<ω
1 and dom(t) = n.

2. b⃗ = ⟨b0, . . . ,bn−1⟩ and bi ∈ Pi,t(i).

Let ⟨t, b⃗⟩ ≤ ⟨t′, b⃗′⟩ if:

1. t′ ⊆ t.

2. For all i ∈ dom(t′), bi ≤n,α b′
i .

This two-step iteration first adds a surjection f : ω → ω1 and then forces with
the product

∏
⟨n,α⟩ Pn,α. Forcing with Q collapses ω1.
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A counterexample with ccc2

To see that every antichain in Q is countable, let π be the projection of Q to
ω<ω
1 and πn,α the projection to Pn,α.

Let D be an uncountable subset of Q.

It suffices to show that π−1(t) ∩ D is uncountable for some t ∈ ω<ω
1 , since it

is a subset of {t} ×
∏

i∈dom(t) Pi,t(i) and P = Add(ω, ω1) is productively ccc.

Case
π(D) is countable. Then by DC, there exists some t ∈ ω<ω

1 such that
π−1(t) ∩ D is uncountable.

Case
π(D) is uncountable. We can assume that for some k ∈ ω, dom(t) = k for all
t ∈ π(D) by shrinking D. We can then identify D with a subset of Pk

∞.

• Pick α < ω1 as above by stability of D.

• Since π(D) is uncountable, there exists some t ∈ π(D) with t(i) ≥ α for
some i < k. Then π−1(t) ∩ D is uncountable.
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