Forcing over choiceless models (2/4)

Philipp Schlicht, University of Auckland120 Years of the Axiom of Choice, Leeds, 8-12 July 2024

Outline

- 0. Introduction
- 1. Adding Cohen subsets by Add(A, 1)
 - Preliminaries
 - Cohen's first model and Dedekind finite sets A
 - Properties of $\operatorname{Add}(\kappa, 1)$ and fragments of DC
 - Adding Cohen subsets over $L(\mathbb{R})$
- 2. Chain conditions and cardinal preservation
 - $\cdot\,$ Variants of the ccc
 - $\cdot\,$ An iteration theorem
 - + A ccc2 forcing that collapses ω_1
- 3. Generic absoluteness principles inconsistent with choice
 - Hartog numbers
 - Very strong absoluteness and consequences
 - Gitik's model
- 4. Random algebras without choice
 - Completeness
 - CCC₂*

We aim for:

- $\cdot\,$ A variant of the ccc the preserves cardinals and cofinalities
- An iteration theorem this variant

The ZFC argument why a ccc (ω_1 -cc) forcing preserves ω_1 uses both regularity of ω_1 and the existence of maximal antichains:

- Suppose 1 forces that $\dot{f}: \omega \to \omega_1^V$ is surjective.
- Pick a maximal antichain of p_n^i for $i \in \omega$ such that $p_n^i \Vdash \dot{f}(n) = \alpha_n^i$.
- Then $\operatorname{ran}(\dot{f})$ is bounded by $\sup_{n,i\in\omega} \alpha_n^i < \omega_1$.

In ZFC, a forcing has the κ -cc if there exist no antichains of size κ . However, there are other equivalent formulations.

Variants of the ccc

Definition (Karagila, Schweber)

- $\mathsf{ccc}_1:$ Every maximal antichain in $\mathbb P$ is countable.
- ccc₂: Every antichain in \mathbb{P} is countable.
- ccc_3: Every predense subset of $\mathbb P$ contains a countable predense subset.

Moreover, ccc_i^* means ccc_i restricted to wellordered antichains, or predense subsets, of \mathbb{P} .

• These notions are equivalent for well-orderable forcings.

Karagila and Schweber showed that the implications

 $CCC_3 \Rightarrow CCC_2 \Rightarrow CCC_1$

are provable in ZF, but none of these implications can be reversed in ZF + DC. Moreover, cc_2 forcings can collapse ω_1 .

Exercise

There exists a ccc_2^* forcing collapsing ω_1 if there is no ω_1 -sequence of distinct reals.

The following theorem of Bukovsky gives us a new variant of the ccc.

Theorem (Bukovsky)

Suppose that $V \subseteq W$ are models of ZFC. Then W is a generic extension of V by a ccc forcing if and only if for every $x \in V$ and $f: x \to V$ in W, there exists a function $g: x \to V$ such that

- 1. $V \models |g(u)| < \omega_1$ for all $u \in x$, and
- 2. $W \models f(u) \in g(u)$ for all $u \in x$.

Their theorem holds for the κ -cc for other regular κ as well.

Lemma (Karagila, Schweber)

ccc₃ implies Bukowsky's condition.

Problem (Karagila, Schweber)

Does Bukowsky's condition imply ccc₃?

Proposition (Karagila, Schweber)

If \mathbb{P} satisfies Bukovský's condition, then \mathbb{P} preserves any cardinal $\kappa > \omega_1$. If ω_1 is regular, then it is not collapsed.

Proof sketch. Suppose that $\kappa < \lambda$ are cardinals and $f: \kappa \to \lambda$ is a surjective function in *V*[*G*].

Pick some $F: \kappa \to [\lambda]^{<\omega_1}$ such that $f(\alpha) \in F(\alpha)$ for all $\alpha < \kappa$. Since f is surjective, $\bigcup_{\alpha < \kappa} F(\alpha) = \lambda$.

But $\bigcup_{\alpha < \kappa} F(\alpha)$ has size at most $\kappa \cdot \omega_1 = \kappa$.

If ω_1 is regular, $\kappa = \omega$ and $\lambda = \omega_1$, then $\bigcup_{n < \omega} F(n)$ is countable.

Problem (Karagila, Schweber)

Is it consistent that a ccc_3 forcing collapses ω_1 ?

The above variants of the ccc do not seem to suffice.

We'd like to isolate a variant of the ccc that includes all σ -linked forcings.

Exercise

 $\sigma\text{-linked}$ forcings preserve all cardinals.

Definition

A forcing \mathbb{P} is σ -linked (ω -linked) if there exists a (linking) function $f: \mathbb{P} \to \omega$ such that for all $p, q \in \mathbb{P}$:

 $f(p) = f(q) \Rightarrow p \parallel q.$

 ${\mathbb P}$ is split into countably many pieces, each one consisting of pairwise compatible conditions.

The definition of κ -linked is analogous.

Example

Hechler forcing is σ -linked:

 $\mathbb{H} := \{ (s, f) \mid s \in \omega^{<\omega}, f \in \omega^{\omega}, s \subseteq f \}$

where $(t,g) \leq (s,f)$ if $s \subseteq t$ and $f(n) \leq g(n)$ for all $n \in \omega$.

Every σ -linked forcing satisfies ccc₂.

Problem

Does every σ -linked forcing satisfy ccc₃?

The definition of κ -linked could say

 $p\bot q \Rightarrow f(p) \neq f(q).$

We equip Ord with the discrete partial order =. This suggests a generalisation of κ -linked relative to a forcing \mathbb{Q} :

Definition

P is **Q**-linked if there exists a ⊥-homomorphism f: **P** → **Q**, i.e., such that for all $p, q \in \mathbb{P}$

 $p \perp q \Rightarrow f(p) \perp f(q).$

In ZFC, if $\mathbb P$ is $\mathbb Q\text{-linked}$ and $\mathbb Q$ is ccc, then $\mathbb P$ is ccc.

Linked forcings

Exercise

Well-ordered c.c.c. forcings preserve cardinals. (To see this, work in HOD with the relevant parameters.)

 $\mathbb{C} := \{p \mid p \colon n \to 2, n \in \omega\}$ denotes Cohen forcing and \mathbb{C}^{κ} the finite support product of κ many copies. They are well-ordered. This goes further:

Lemma

Suppose that $\mathbb P$ is $\mathbb Q\text{-linked}$ and $\mathbb Q$ is well-ordered and c.c.c. Then $\mathbb P$ preserves all cardinals.

Proof sketch. Suppose that $1_{\mathbb{P}} \Vdash \dot{f} : \omega \to \check{\omega}_1$ is surjective.

Let $g \colon \mathbb{P} \to \mathbb{Q}$ be a \bot -homomorphism. Define $q \Vdash^* \varphi \Leftrightarrow \exists p \ f(p) = q \land p \Vdash \varphi$.

• If $q \Vdash^* \varphi$, $q' \Vdash^* \psi$ and φ , ψ are contradictory, then $q \perp q'$, since

$$p \Vdash \varphi \land p' \Vdash \psi \Rightarrow p \bot p' \Rightarrow f(p) \bot f(p').$$

- Let A_n be a maximal antichain of $q \in \mathbb{Q}$ with $q \Vdash^* : \dot{f}(n) = \alpha$ "
- This can be done in $M := HOD_{\{\mathbb{P}, \mathbb{Q}, \hat{f}\}}$, since $\mathbb{Q} \subseteq M$.
- In M, ω_1^V is regular, $\bigcup_{n \in \omega} A_n$ is countable and $\omega_1^V \leq^* \bigcup_{n \in \omega} A_n$.

Linked forcings

Exercise

Let \mathbb{P}_{α} denote α with the discrete partial order. Then $\prod_{\alpha < \omega_1} \mathbb{P}_{\alpha}$ collapses ω_1 .

We therefore need a uniformity requirement on an iteration.

A product or iteration of σ -linked forcings is called uniform if it comes with a sequence of names for linking functions.

Theorem

Any uniform finite support iteration of σ -linked forcings of length κ is \mathbb{C}^{κ} -linked.

Hence cardinals are preserved.

Problem

Do Cohen and Hechler models over V have different theories?

- A Cohen model is a \mathbb{C}^{κ} -generic extension for some $\kappa \geq \omega_2$.
- + A Hechler model is obtained by a finite support iteration of $\mathbb H$ of some length $\kappa \geq \omega_2.$

Woodin's argument that Cohen and random models have different theories uses Truss' result that Cohen and random reals don't commute.

Proposition (cont.)

Any uniform finite support iteration of σ -linked forcings of length κ is \mathbb{C}^{κ} -linked.

Proof idea. Let $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{P}}_{\alpha}, \dot{f}_{\alpha} | \alpha < \kappa \rangle$ denote such an iteration, where \dot{f}_{α} is a \mathbb{P}_{α} -name for a σ -linking function for $\dot{\mathbb{P}}_{\alpha}$.

Show that the set $\tilde{\mathbb{P}}$ of all $p \in \mathbb{P}_{\kappa}$ such that for all $\alpha \in \operatorname{supp}(p)$, $p \upharpoonright \alpha$ decides $f_{\alpha}(p(\alpha))$, is dense.

Use the values of these functions to read off a \perp -homomorphism from $\tilde{\mathbb{P}}$ to the set $\operatorname{Fun}_{<\omega}(\kappa,\omega)$ of finite partial functions $p \colon \kappa \to \omega$.

 $\operatorname{Fun}_{<\omega}(\kappa,\omega)$ can be densely embedded into \mathbb{C}^{κ} .

The following is just the ccc_2^* for $\mathbb{B}(\mathbb{P})$.

Definition

 \mathbb{P} is called $(\omega, 1)$ -narrow if all partial \parallel -homomorphisms $f: \mathbb{P} \rightarrow \text{Ord}$ have countable range.

- A partial $\|$ -homomorphism f corresponds to a function on the set D all $p \in \mathbb{P}$ deciding a statement, for instance $p \Vdash \dot{g}(n) = \alpha_p$. f sends $p \in D$ to α_p .
- A partial $\|$ -homomorphism f can be thought of a generalised antichain consisting of "blocks" $f^{-1}(\alpha)$. Different blocks are incompatible.
- In a complete Boolean algebra, a partial $\|$ -homomorphism corresponds to an antichain, since subsets *A* and *B* of \mathbb{P} are elementwise incompatible if and only if sup(A) is incompatible with sup(B).

However, when trying to prove cardinal preservation via a function \dot{f} : $\omega \rightarrow \omega_1$, an ω -sequence of such homomorphisms appears.

This is captured by a uniform version of ccc_2^* for many homomorphisms.

Definition

1. Suppose that ν is an ordinal.

 \mathbb{P} is called (ω, ν) -narrow if for any sequence $\vec{f} = \langle f_i \mid i < \mu \rangle$ of partial \parallel -homomorphisms $f_i \colon \mathbb{P} \to \text{Ord}$, where $\mu \leq \nu$,

$$|\bigcup_{i<\mu}\operatorname{ran}(f_i)| \leq |\max(\omega,\mu)|.$$

2. \mathbb{P} is called ω -narrow or just narrow if it is (ω, ν) -narrow for all ν .

Exercise

 $(\omega, 1)$ -narrow implies (ω, ν) -narrow for all $\nu \geq \omega_1$.

Lemma

Every $(\omega, 1)$ -narrow forcing \mathbb{P} preserves all cardinals and cofinalities $\geq \omega_2$.

Proof sketch. Let $\lambda \geq \omega_2$ be a cardinal.

Suppose that $\mu < \lambda$ is a cardinal and $p \Vdash_{\mathbb{P}} ``f: \mu \to \lambda$ is surjective".

- For each $\alpha < \mu$, let D_{α} be the set of $q \le p$ deciding $\dot{f}(\alpha)$.
- Let $f_{\alpha}: D_{\alpha} \to \lambda$ send q to the unique $\beta < \lambda$ with $q \Vdash \dot{f}(\alpha) = \beta$.
- Each f_{α} is a partial **||-homomorphism**.

Since \mathbb{P} is $(\omega, 1)$ -narrow, $otp(ran(f_{\alpha})) < \omega_1$ for each $\alpha < \mu$. Hence

$$|\bigcup_{\alpha<\mu}\operatorname{ran}(f_{\alpha})|\leq |\max(\omega_{1},\mu)|<\lambda.$$

But $\bigcup_{\alpha < \mu} \operatorname{ran}(f_{\alpha}) = \lambda.$

A similar argument works for cofinalities.

Lemma

Every narrow forcing $\mathbb P$ preserves all cardinals and cofinalities.

Proof. It suffices to show that \mathbb{P} preserves ω_1 .

Suppose that $p \Vdash_{\mathbb{P}} ``f: \omega \to \omega_1$ is surjective".

- For each $n < \omega$, let D_n denote the set of $q \le p$ deciding $\dot{f}(n)$.
- Let $f_n: D_n \to \omega_1$ send q to the unique $\beta < \omega_1$ with $q \Vdash \dot{f}(n) = \beta$.
- Since \mathbb{P} is narrow, we have $|\bigcup_{n<\omega} \operatorname{ran}(f_n)| \leq \omega$. But $\bigcup_{n<\omega} \operatorname{ran}(f_n) = \omega_1$.

A similar argument works for preserving cofinality ω_1 .

Narrow forcings

Exercise

Every σ -linked forcing is (ω , 1)-narrow. (Uses the next lemma.)

Lemma

If \mathbb{Q} is $(\omega, 1)$ -narrow and $f: \mathbb{P} \to \mathbb{Q}$ is a \perp -homomorphism, then \mathbb{P} is $(\omega, 1)$ -narrow.

Proof. Suppose that $g \colon \mathbb{P} \to \text{Ord}$ is a partial $\|$ -homomorphism.

Let $D := \operatorname{ran}(f)$ and define $h: D \to \operatorname{Ord}$ as follows.

- For all $p, r \in \mathbb{P}$ with f(p) = f(r), we have g(p) = g(r), since f is a \bot -homomorphism and g is a \parallel -homomorphism.
- For $f(p) = q \in D$, we can thus define h(q) := g(p).

We claim that *h* is a partial **||-homomorphism**.

- Suppose that $q, s \in D$ with f(p) = q, f(r) = s and $q \parallel s$.
- Since f is a \perp -homomorphism, $p \parallel r$.
- Since g is a $\|$ -homomorphism, $h(q) = g(p) \| g(r) = h(s)$ as desired.

Since ran(g) = ran(h) and \mathbb{Q} is $(\omega, 1)$ -narrow, the claim follows.

We need a stronger variant of narrow and a uniformity requirement for an iteration.

Definition

 \mathbb{P} is called uniformly narrow if there exists a function *G* that sends each partial $\|$ -homomorphism $f: \mathbb{P} \to \text{Ord}$ to an injective function $G(f): \operatorname{ran}(f) \to \omega$.

A uniform iteration comes with a sequence of functions G_{α} .

Theorem

A uniform iteration of uniformly narrow forcings with finite support is again uniformly narrow.

Example

One can iterate combinations of \mathbb{C}^{κ} , σ -linked forcings such as Hechler forcing or eventually different forcing and (as we see later) random algebras, while preserving cardinals and cofinalities.

Theorem (cont.)

A uniform iteration of uniformly narrow forcings with finite support is again uniformly narrow.

Proof. Let $\vec{\mathbb{P}} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{P}}_{\beta}, \dot{g}_{\beta} \mid \alpha \leq \delta, \beta < \delta \rangle$ denote the iteration.

We construct a sequence $\langle G_{\gamma} | \gamma \leq \delta \rangle$ of functions by recursion on $\gamma \leq \delta$ from $\vec{\mathbb{P}}$ and θ , where G_{γ} witnesses that \mathbb{P}_{γ} is uniformly narrow.

Case. γ is a successor.

Suppose that $\gamma = \beta + 1$ and G_{β} has been constructed. Let $f: \mathbb{P}_{\beta} * \dot{\mathbb{P}}_{\beta} \rightarrow \text{Ord}$ be a partial $\|$ -homomorphism. and

$$\dot{f} := \{ ((\dot{q}, \check{\alpha})^{\bullet}, p) \mid f(p, \dot{q}) = \alpha \}.$$

Claim $\mathbb{1}_{\mathbb{P}_{\beta}}$ forces that \dot{f} is a partial $\|$ -homomorphism on $\dot{\mathbb{P}}_{\beta}$.

$$\dot{f} := \{ ((\dot{q}, \check{\alpha})^{\bullet}, p) \mid f(p, \dot{q}) = \alpha \}.$$

Claim (cont.)

 $\mathbb{1}_{\mathbb{P}_{\beta}}$ forces that \dot{f} is a partial $\|$ -homomorphism on $\dot{\mathbb{P}}_{\beta}$.

Proof. Suppose that *G* is \mathbb{P}_{β} -generic over *V*.

In V[G], take $q_0, q_1 \in \dot{\mathbb{P}}^G_\beta$ with $\dot{f}^G(q_i) = \alpha_i$ for i < 2. Suppose that $q_0 ||q_1$.

- There exist \dot{q}_i with $\dot{q}_i^G = q_i$ and $p_i \in G$ with $((\dot{q}_i, \check{\alpha}_i)^{\bullet}, p_i) \in f$ for i < 2.
- Since $q_0 || q_1$, some $p \in G$ forces $\dot{q}_0 || \dot{q}_1$.
- Since we can assume $p \leq p_0, p_1$, we have $(p_0, \dot{q}_0) || (p_1, \dot{q}_1)$.
- $\alpha_0 = f(p_0, \dot{q}_0) = f(p_1, \dot{q}_1) = \alpha_1$, since f is a \parallel -homomorphism.

Narrow forcings

Claim (cont.)

 $\mathbb{1}_{\mathbb{P}_{\beta}}$ forces that \dot{f} is a partial $\|$ -homomorphism on $\dot{\mathbb{P}}_{\beta}$.

By the claim,

$$1 \Vdash_{\mathbb{P}_{\beta}} \dot{g}_{\beta}(\dot{f}) \colon \operatorname{ran}(\dot{f}) \to \omega \text{ is injective.}$$

We can read off a \mathbb{P}_{β} -name \dot{h} for a function extending $\dot{g}_{\beta}(\dot{f})^{-1}$. Then

 $1 \Vdash_{\mathbb{P}_{\beta}} \dot{h} \colon \omega \to \operatorname{ran}(\dot{f})$ is surjective.

For each $n < \omega$, let D_n denote the set of all $p \in \mathbb{P}_\beta$ that decide $\dot{h}(n)$.

Let $h_n : D_n \to \text{Ord}$, where $h_n(p)$ is the unique δ such that $p \Vdash \dot{h}(n) = \delta$. h_n is a \parallel -homomorphism.

Since G_{β} witnesses that \mathbb{P}_{β} is uniformly narrow, $\langle G_{\beta}(h_n) | n < \omega \rangle$ consists of injective functions $G_{\beta}(h_n)$: $\operatorname{ran}(h_n) \to \omega$.

Glue them to an injective function $i: \bigcup_{n < \omega} \operatorname{ran}(h_n) \to \omega$.

Since $\mathbb{1}_{\mathbb{P}} \Vdash \operatorname{ran}(\dot{f}) \subseteq \bigcup_{\alpha < \theta} \operatorname{ran}(h_{\alpha}), \operatorname{ran}(f) \subseteq \bigcup_{\alpha < \theta} \operatorname{ran}(h_{\alpha})$ by the definition of \dot{f} .

Thus $i \upharpoonright \operatorname{ran}(f) \to \theta$ is injective. Let $G_{\gamma}(f) := i \upharpoonright \operatorname{ran}(f)$.

Narrow forcings

Case. γ is a limit.

Suppose that $f: \mathbb{P}_{\gamma} \rightarrow \text{Ord}$ is a partial \parallel -homomorphism.

It suffices to show $\operatorname{HOD}_{\vec{\mathbb{P}},f} \models \operatorname{ran}(f) \leq \theta$. Then take the least injective function $G_{\gamma}(f) \colon \operatorname{ran}(f) \to \theta$ in $\operatorname{HOD}_{\vec{\mathbb{P}},f}$. Work in $\operatorname{HOD}_{\vec{\mathbb{P}},f}$.

Otherwise $ran(f) > \theta$. We can assume $ran(f) = \theta^+$ by restricting *f*.

Let $s_{\alpha} \in [\gamma]^{<\omega}$ for $\alpha \in \operatorname{ran}(f)$ be least in $[\operatorname{Ord}]^{<\omega}$ such that there exists some $p \in \mathbb{P}_{\gamma}$ with support s_{α} and $f(p) = \alpha$. Let $\vec{s} = \langle s_{\alpha} \mid \alpha \in \operatorname{ran}(f) \rangle$.

We can assume:

- All $p \in \mathbb{P}_{\gamma}$ with $f(p) = \alpha$ have support s_{α} .
- \vec{s} forms a Δ -system with root r.

Fix $\gamma' < \gamma$ such that $\alpha + 1 < \gamma_0$ for all $\alpha \in r$. Let $D := \{p \mid \gamma' \mid p \in dom(f)\}$ be the projection of dom(f) to $\mathbb{P}_{\gamma'}$.

```
Let g: D \to \text{Ord}, where g(p) := \alpha if
```

$$\exists q \in \mathsf{dom}(f) \ (q \upharpoonright \gamma' = p \land f(q) = \alpha)$$

g well-defined by the next claim.

Recall $g: D \to \text{Ord}, g(p) := \alpha \text{ if } \exists q \in \text{dom}(f) \ (q \restriction \gamma' = p \land f(q) = \alpha).$

Claim

If $u, v \in \text{dom}(f)$ with $u \upharpoonright \gamma' = v \upharpoonright \gamma' = p \in D$, then f(u) = f(v).

Claim

 $g: \mathbb{P}_{\beta} \rightarrow \text{Ord is a partial } \|\text{-homomorphism.}$

Claim

 $\operatorname{ran}(f) = \operatorname{ran}(g).$

The inductive hypothesis for γ' yields an injective function $G_{\gamma'}(g)$: ran $(g) \to \theta$. Since $G_{\gamma'}, g \in \text{HOD}_{\vec{\mathbb{P}}, f'}$ we have $\text{HOD}_{\vec{\mathbb{P}}, f} \models \text{ran}(f) = \text{ran}(g) \le \theta$, contradicting the assumption.

We're done!

A counterexample with ccc₂

The next result uses a standard technique for symmetric models.

Let \mathcal{L} be a first-order language and M an \mathcal{L} -structure. Suppose that $\mathscr{G} \subseteq \operatorname{Aut}(M)$ is a group and \mathscr{I} an ideal of subsets of M.

- A subgroup of \mathscr{G} is called large if it contains $fix(A) = \{\pi \in \mathscr{G} \mid \pi \mid A = id\}$ for some $A \in \mathscr{I}$.
- A subset X of M is called stable if there exists a large subgroup \mathscr{H} of \mathscr{G} such that $\pi[X] = X$ for all $\pi \in \mathscr{H}$.

Theorem (Karagila, Schweber)

In a model of ZFC, let \mathcal{L} , M, \mathscr{G} and \mathscr{I} be as above. There is a symmetric extension of the universe in which there exists an isomorphic copy N of M such that every subset of N^k in the symmetric extension is a stable isomorphic copy of a subset of M^k .

In addition, we can require:

- $\mathrm{DC}_{<\kappa}$ holds in the extension, if \mathscr{I} is $<\kappa$ -complete.
- The extension has no new λ -sequences for any prescribed cardinal λ .

Theorem (Karagila, Schweber)

It is consistent with ZF + DC that there is a ccc_2 forcing which collapses ω_1 .

Proof sketch. We construct a symmetric model over a model of ZFC. Let \mathbb{P} denote $Add(\omega, \omega_1)$ without 1. \mathbb{P} is productively c.c.c.

 $\mathbb{P}_{\infty} := \bigoplus_{(n,\alpha) \in \omega \times \omega_1} \mathbb{P}_{n,\alpha}$ is the lottery sum, where each $\mathbb{P}_{n,\alpha} \cong \mathbb{P}$.

Let \mathscr{G} act on each $\mathbb{P}_{n,\alpha}$ individually for countably many $\langle n, \alpha \rangle$ at the same time. Let \mathscr{I} be the ideal of countable subsets of \mathbb{P}_{∞} .

We get a symmetric extension *M* of *V* and working in *M*, an isomorphic copy of \mathbb{P}_{∞} , such that *M* is a model of DC and ω_1 remains uncountable in *M*.

We use the same notation for the copies.

For any subset A of \mathbb{P}_{∞}^k , there is a countable $\alpha < \omega_1$ such that if $\alpha \leq \beta$ and $p(i) \in \mathbb{P}_{n,\beta}$ for any $p \in A^k$, i < k and $n \in \omega$, then any condition q obtained by replacing p(i) by an arbitrary condition in $\mathbb{P}_{n,\beta}$ is in A.

In N, Q consists of pairs $\langle t, \vec{b} \rangle$ such that:

1. $t \in \omega_1^{<\omega}$ and dom(t) = n. 2. $\vec{b} = \langle b_0, \dots, b_{n-1} \rangle$ and $b_i \in \mathbb{P}_{i,t(i)}$.

Let $\langle t, \vec{b} \rangle \leq \langle t', \vec{b}' \rangle$ if:

1. $t' \subseteq t$.

2. For all $i \in \operatorname{dom}(t')$, $b_i \leq_{n,\alpha} b'_i$.

This two-step iteration first adds a surjection $f: \omega \to \omega_1$ and then forces with the product $\prod_{\langle n, \alpha \rangle} \mathbb{P}_{n, \alpha}$. Forcing with \mathbb{Q} collapses ω_1 .

A counterexample with ccc₂

To see that every antichain in \mathbb{Q} is countable, let π be the projection of \mathbb{Q} to $\omega_1^{<\omega}$ and $\pi_{n,\alpha}$ the projection to $\mathbb{P}_{n,\alpha}$.

Let $\ensuremath{ D}$ be an uncountable subset of $\mathbb{Q}.$

It suffices to show that $\pi^{-1}(t) \cap D$ is uncountable for some $t \in \omega_1^{<\omega}$, since it is a subset of $\{t\} \times \prod_{i \in dom(t)} \mathbb{P}_{i,t(i)}$ and $\mathbb{P} = Add(\omega, \omega_1)$ is productively ccc.

Case

 $\pi(D)$ is countable. Then by DC, there exists some $t \in \omega_1^{<\omega}$ such that $\pi^{-1}(t) \cap D$ is uncountable.

Case

 $\pi(D)$ is uncountable. We can assume that for some $k \in \omega$, dom(t) = k for all $t \in \pi(D)$ by shrinking D. We can then identify D with a subset of \mathbb{P}_{∞}^{k} .

- Pick $\alpha < \omega_1$ as above by stability of *D*.
- Since $\pi(D)$ is uncountable, there exists some $t \in \pi(D)$ with $t(i) \ge \alpha$ for some i < k. Then $\pi^{-1}(t) \cap D$ is uncountable.