Forcing over choiceless models (2/4)

Philipp Schlicht, University of Auckland 120 Years of the Axiom of Choice, Leeds, 8-12 July 2024

Outline

- 0. Introduction
- 1. Adding Cohen subsets by Add(*A,* 1)
	- Preliminaries
	- Cohen's first model and Dedekind finite sets *A*
	- Properties of Add(*κ,* 1) and fragments of DC
	- Adding Cohen subsets over *L*(R)
- 2. Chain conditions and cardinal preservation
	- Variants of the ccc
	- An iteration theorem
	- A ccc² forcing that collapses *ω*¹
- 3. Generic absoluteness principles inconsistent with choice
	- Hartog numbers
	- Very strong absoluteness and consequences
	- Gitik's model
- 4. Random algebras without choice
	- Completeness
	- ccc*[∗]* 2

We aim for:

- A variant of the ccc the preserves cardinals and cofinalities
- An iteration theorem this variant

The ZFC argument why a ccc (ω_1 -cc) forcing preserves ω_1 uses both regularity of ω_1 and the existence of maximal antichains:

- Suppose 1 forces that $\dot{f}: \omega \to \omega_1^V$ is surjective.
- Pick a maximal antichain of p_n^i for $i \in \omega$ such that $p_n^i \Vdash f(n) = \alpha_n^i$.
- Then $\text{ran}(\hat{f})$ is bounded by $\text{sup}_{n,i\in\omega}\alpha_n^i < \omega_1$.

In ZFC, a forcing has the *κ*-cc if there exist no antichains of size *κ*. However, there are other equivalent formulations.

Variants of the ccc

Definition (Karagila, Schweber)

- \cdot ccc₁: Every maximal antichain in $\mathbb P$ is countable.
- \cdot ccc₂: Every antichain in $\mathbb P$ is countable.
- \cdot ccc₃: Every predense subset of $\mathbb P$ contains a countable predense subset.

Moreover, ccc_i* means ccc_i restricted to wellordered antichains, or predense subsets, \circ f \mathbb{P}

• These notions are equivalent for well-orderable forcings.

Karagila and Schweber showed that the implications

 $CCC_3 \Rightarrow CCC_2 \Rightarrow CCC_1$

are provable in ZF, but none of these implications can be reversed in $ZF + DC$. Moreover, ccc² forcings can collapse *ω*1.

Exercise

There exists a ccc₂* forcing collapsing $ω_1$ if there is no $ω_1$ -sequence of distinct reals.

The following theorem of Bukovsky gives us a new variant of the ccc.

Theorem (Bukovsky)

Suppose that V ⊆ W are models of ZFC*. Then W is a generic extension of V by a ccc forcing if and only if for every x ∈ V and f*: *x → V in W, there exists a function g*: *x → V such that*

- 1. $V = |q(u)| < \omega_1$ for all $u \in X$, and
- 2. $W \models f(u) \in q(u)$ for all $u \in X$.

Their theorem holds for the *κ*-cc for other regular *κ* as well.

Lemma (Karagila, Schweber)

ccc³ *implies Bukowsky's condition.*

Problem (Karagila, Schweber)

Does Bukowsky's condition imply ccc₃?

Proposition (Karagila, Schweber)

If P satisfies Bukovský's condition, then P preserves any cardinal $\kappa > \omega_1$. If ω_1 is regular, then it is not collapsed.

Proof sketch. Suppose that $\kappa < \lambda$ are cardinals and $f: \kappa \to \lambda$ is a surjective function in *V*[*G*].

Pick some $F: \kappa \to [\lambda]^{<\omega_1}$ such that $f(\alpha) \in F(\alpha)$ for all $\alpha < \kappa$. Since f is surjective, $\bigcup_{\alpha<\kappa} F(\alpha) = \lambda$.

But $\bigcup_{\alpha<\kappa} F(\alpha)$ has size at most $\kappa \cdot \omega_1 = \kappa$.

If ω_1 is regular, $\kappa = \omega$ and $\lambda = \omega_1$, then $\bigcup_{n < \omega} F(n)$ is countable.

Problem (Karagila, Schweber)

Is it consistent that a ccc₃ forcing collapses ω_1 ?

The above variants of the ccc do not seem to suffice.

We'd like to isolate a variant of the ccc that includes all *σ*-linked forcings.

Exercise

σ-linked forcings preserve all cardinals.

Definition

A forcing P is *σ*-linked (*ω*-linked) if there exists a (linking) function *f*: P *→ ω* such that for all $p, q \in \mathbb{P}$:

 $f(p) = f(q) \Rightarrow p \parallel q$.

P is split into countably many pieces, each one consisting of pairwise compatible conditions.

The definition of *κ*-linked is analogous.

Example

Hechler forcing is *σ*-linked:

 $\mathbb{H} := \{ (s, f) \mid s \in \omega^{<\omega}, f \in \omega^{\omega}, s \subseteq f \}$

where $(t, q) \leq (s, f)$ if $s \subseteq t$ and $f(n) \leq g(n)$ for all $n \in \omega$.

Every σ -linked forcing satisfies ccc₂.

Problem

Does every σ-linked forcing satisfy ccc3*?*

The definition of *κ*-linked could say

 $p \perp q \Rightarrow f(p) \neq f(q)$.

We equip Ord with the discrete partial order $=$. This suggests a generalisation of *κ*-linked relative to a forcing Q:

Definition

P is Q-linked if there exists a *⊥*-homomorphism *f*: P *→* Q, i.e., such that for all $p, q \in \mathbb{P}$

 $p \perp q \Rightarrow f(p) \perp f(q)$.

In ZFC, if $\mathbb P$ is $\mathbb Q$ -linked and $\mathbb Q$ is ccc, then $\mathbb P$ is ccc.

Linked forcings

Exercise

Well-ordered c.c.c. forcings preserve cardinals. (To see this, work in HOD with the relevant parameters.)

 $\mathbb{C} := \{p \mid p : n \to 2, n \in \omega\}$ denotes Cohen forcing and \mathbb{C}^{κ} the finite support product of *κ* many copies. They are well-ordered. This goes further:

Lemma

Suppose that $\mathbb P$ *is* $\mathbb O$ -linked and $\mathbb O$ *is well-ordered and c.c.c. Then* $\mathbb P$ *preserves all cardinals.*

Proof sketch. Suppose that $1_{\mathbb{P}} \Vdash \dot{f}$: $\omega \to \check{\omega}_1$ is surjective.

Let *g*: $\mathbb{P} \to \mathbb{Q}$ be a ⊥-homomorphism. Define *q* $\mathbb{H}^* \varphi \Leftrightarrow \exists p \ f(p) = q \land p \Vdash \varphi$.

• If *q* ⊩*[∗] φ*, *q ′* ⊩*[∗] ψ* and *φ*, *ψ* are contradictory, then *q⊥q ′* , since

$$
p \Vdash \varphi \land p' \Vdash \psi \Rightarrow p \bot p' \Rightarrow f(p) \bot f(p').
$$

- Let A_n be a maximal antichain of $q \in \mathbb{Q}$ with $q \Vdash^*$ " $\dot{f}(n) = \alpha$ "
- \cdot This can be done in $M := \mathsf{HOD}_{\{\mathbb{P},\mathbb{Q},\hat{f}\}}$, since $\mathbb{Q} \subseteq M.$
- \cdot In *M*, ω_1^V is regular, $\bigcup_{n\in\omega}A_n$ is countable and $\omega_1^V\leq^*\bigcup_{n\in\omega}A_n.$

 \Box

Linked forcings

Exercise

Let \mathbb{P}_α denote α with the discrete partial order. Then $\prod_{\alpha<\omega_1}\mathbb{P}_\alpha$ collapses ω_1 .

We therefore need a uniformity requirement on an iteration.

A product or iteration of σ -linked forcings is called uniform if it comes with a sequence of names for linking functions.

Theorem

Any uniform finite support iteration of σ-linked forcings of length κ is C*κ-linked.*

Hence cardinals are preserved.

Problem

Do Cohen and Hechler models over V have different theories?

- \cdot *A Cohen model is a* \mathbb{C} ^{*κ*}-generic extension for some κ $> \omega$ ₂.
- A *Hechler model is obtained by a finite support iteration of* $\mathbb H$ *of some length* $\kappa \geq \omega_2$ *.*

Woodin's argument that Cohen and random models have different theories uses Truss' result that Cohen and random reals don't commute.

Proposition (cont.)

Any uniform finite support iteration of *σ*-linked forcings of length *κ* is C *κ* -linked.

Proof idea. Let $\langle \mathbb{P}_\alpha, \mathbb{P}_\alpha, \mathring{f}_\alpha \mid \alpha < \kappa \rangle$ denote such an iteration, where \dot{f}_α is a \mathbb{P}_{α} -name for a *σ*-linking function for $\dot{\mathbb{P}}_{\alpha}$.

Show that the set \tilde{P} of all $p \in \mathbb{P}_\kappa$ such that for all $\alpha \in \text{supp}(p)$, $p \upharpoonright \alpha$ decides ˙ *fα*(*p*(*α*)), is dense.

Use the values of these functions to read off a ⊥-homomorphism from \tilde{P} to the set $\text{Fun}_{\leq \omega}(\kappa, \omega)$ of finite partial functions $p: \kappa \to \omega$.

 $\operatorname{Fun}_{<\omega}(\kappa,\omega)$ can be densely embedded into $\mathbb C^\kappa.$

□

The following is just the ccc_2^* for $\mathbb{B}(\mathbb{P}).$

Definition

P is called (*ω,* 1)-narrow if all partial *∥*-homomorphisms *f*: P *⇀* Ord have countable range.

- A partial *∥*-homomorphism *f* corresponds to a function on the set *D* all *p* ∈ $\mathbb P$ deciding a statement, for instance *p* \Vdash $\dot{g}(n) = \alpha_p$. *f* sends *p* ∈ *D* to α_p .
- A partial *∥*-homomorphism *f* can be thought of a generalised antichain consisting of "blocks" $f^{-1}(\alpha)$. Different blocks are incompatible.
- In a complete Boolean algebra, a partial *∥*-homomorphism corresponds to an antichain, since subsets *A* and *B* of P are elementwise incompatible if and only if sup(*A*) is incompatible with sup(*B*).

However, when trying to prove cardinal preservation via a function ˙ *f*: *ω → ω*1, an *ω*-sequence of such homomorphisms appears.

This is captured by a uniform version of ccc₂^{*} for <mark>many</mark> homomorphisms. ₁₂

Definition

1. Suppose that *ν* is an ordinal.

 ${\mathbb P}$ is called (ω,ν) -narrow if for any sequence $\vec{f}=\langle f_i\mid i<\mu\rangle$ of partial *∥*-homomorphisms *fⁱ* : P *→* Ord, where *µ ≤ ν*,

$$
|\bigcup_{i<\mu}\operatorname{ran}(f_i)|\leq |\mathsf{max}(\omega,\mu)|.
$$

2. P is called ω -narrow or just narrow if it is (ω, ν) -narrow for all ν .

Exercise

(*ω,* 1)-narrow implies (*ω, ν*)-narrow for all *ν ≥ ω*1.

Lemma

Every (ω , 1)-narrow forcing **P** preserves all cardinals and cofinalities $\geq \omega_2$.

Proof sketch. Let $\lambda > \omega_2$ be a cardinal.

Suppose that $\mu < \lambda$ is a cardinal and $\rho \Vdash_{\mathbb{P}} \text{``\dot{f}: $\mu \to \lambda$ is surjective''.}$

- \cdot For each $\alpha < \mu$, let D_{α} be the set of $q \leq p$ deciding $\dot{f}(\alpha)$.
- Let *f^α* : *D^α → λ* send *q* to the unique *β < λ* with *q* ⊩ ˙ *f*(*α*) = *β*.
- Each *f^α* is a partial *∥*-homomorphism.

Since P is $(\omega, 1)$ -narrow, $\text{otp}(\text{ran}(f_\alpha)) < \omega_1$ for each $\alpha < \mu$. Hence

$$
|\bigcup_{\alpha<\mu}\mathrm{ran}(f_\alpha)|\leq|\mathsf{max}(\omega_1,\mu)|<\lambda.
$$

But ∪ *α<µ* ran(*fα*) = *λ*.

A similar argument works for cofinalities.

 \Box

Lemma

Every narrow forcing P *preserves all cardinals and cofinalities.* **Proof.** It suffices to show that $\mathbb P$ preserves ω_1 . Suppose that $p \Vdash_{\mathbb{P}} \text{``\dot{f}: $\omega \to \omega_1$ is surjective''}.$

- \cdot For each $n < \omega$, let D_n denote the set of $q \leq p$ deciding $\hat{f}(n)$.
- \cdot Let $f_n: D_n \to \omega_1$ send q to the unique $\beta < \omega_1$ with $q \Vdash \dot{f}(n) = \beta$.
- \cdot Since $\mathbb P$ is narrow, we have $|\bigcup_{n<\omega} \text{ran}(f_n)| \leq \omega$. But $\bigcup_{n<\omega} \text{ran}(f_n) = \omega_1$.

A similar argument works for preserving cofinality *ω*1. \Box

Narrow forcings

Exercise

Every σ -linked forcing is $(\omega, 1)$ -narrow. (Uses the next lemma.)

Lemma

If \mathbb{Q} *is* (ω , 1)*-narrow and* $f: \mathbb{P} \to \mathbb{Q}$ *is a ⊥-homomorphism, then* \mathbb{P} *is* (ω , 1)*-narrow.*

Proof. Suppose that $g: \mathbb{P} \to \text{Ord}$ is a partial $\|$ -homomorphism.

Let $D := \text{ran}(f)$ and define $h: D \to \text{Ord}$ as follows.

- For all $p, r \in \mathbb{P}$ with $f(p) = f(r)$, we have $g(p) = g(r)$, since f is a *⊥*-homomorphism and *g* is a *∥*-homomorphism.
- For $f(p) = q \in D$, we can thus define $h(q) := q(p)$.

We claim that *h* is a partial *∥*-homomorphism.

- Suppose that $q, s \in D$ with $f(p) = q, f(r) = s$ and $q \parallel s$.
- Since *f* is a *⊥*-homomorphism, *p ∥ r*.
- Since *g* is a *∥*-homomorphism, *h*(*q*) = *g*(*p*) *∥ g*(*r*) = *h*(*s*) as desired.

Since $\text{ran}(q) = \text{ran}(h)$ and $\mathbb Q$ is $(\omega, 1)$ -narrow, the claim follows.

 \Box

We need a stronger variant of narrow and a uniformity requirement for an iteration.

Definition

P is called uniformly narrow if there exists a function *G* that sends each partial *∥*-homomorphism *f*: P *⇀* Ord to an injective function $G(f): \text{ran}(f) \to \omega$.

A uniform iteration comes with a sequence of functions *Gα*.

Theorem

A uniform iteration of uniformly narrow forcings with finite support is again uniformly narrow.

Example

One can iterate combinations of C *κ* , *σ*-linked forcings such as Hechler forcing or eventually different forcing and (as we see later) random algebras, while preserving cardinals and cofinalities.

Theorem (cont.)

A uniform iteration of uniformly narrow forcings with finite support is again uniformly narrow.

Proof. Let $\vec{P} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{P}}_{\beta}, \dot{g}_{\beta} \mid \alpha \leq \delta, \beta < \delta \rangle$ denote the iteration.

We construct a sequence $\langle G_\gamma | \gamma \leq \delta \rangle$ of functions by recursion on $\gamma \leq \delta$ from \vec{P} and θ , where G_γ witnesses that \mathbb{P}_γ is uniformly narrow.

Case. *γ* is a successor.

Suppose that $\gamma = \beta + 1$ and G_{β} has been constructed. Let $f: \mathbb{P}_{\beta} * \dot{\mathbb{P}}_{\beta} \to \text{Ord}$ be a partial *∥*-homomorphism. and

$$
\dot{f} := \{ ((\dot{q}, \check{\alpha})^{\bullet}, p) \mid f(p, \dot{q}) = \alpha \}.
$$

Claim 1_{₽β} forces that \dot{f} is a partial ∥-homomorphism on $\dot{\mathbb{P}}_\beta.$

$$
\dot{f} := \{ ((\dot{q}, \check{\alpha})^{\bullet}, p) \mid f(p, \dot{q}) = \alpha \}.
$$

Claim (cont.)

1_{ℙβ} forces that \dot{f} is a partial ∥-homomorphism on $\dot{\mathbb{P}}_\beta.$

Proof. Suppose that *G* is P*β*-generic over *V*.

In *V*[G], take $q_0, q_1 \in \dot{\mathbb{P}}^G_\beta$ with $\dot{f}^G(q_i) = \alpha_i$ for $i < 2$. Suppose that $q_0 || q_1$.

- There exist \dot{q}_i with $\dot{q}_i^G = q_i$ and $p_i \in G$ with $((\dot{q}_i, \check{\alpha}_i)^\bullet, p_i) \in \dot{f}$ for $i < 2$.
- \cdot Since q_0 *||* q_1 , some $p \in G$ forces \dot{q}_0 *||* \dot{q}_1 .
- Since we can assume $p \leq p_0, p_1$, we have (p_0, \dot{q}_0) //(p_1, \dot{q}_1).
- $\alpha_0 = f(p_0, \dot{q}_0) = f(p_1, \dot{q}_1) = \alpha_1$, since f is a *∥*-homomorphism.

П

Narrow forcings

Claim (cont.)

1_{ℙβ} forces that \dot{f} is a partial ∥-homomorphism on $\dot{\mathbb{P}}_\beta.$

By the claim,

$$
1 \Vdash_{\mathbb{P}_{\beta}} \dot{g}_{\beta}(\dot{f}): \operatorname{ran}(\dot{f}) \to \omega \text{ is injective.}
$$

We can read off a ℙ $_{\beta}$ -name \dot{h} for a function extending $\dot{g}_{\beta}(\dot{f})^{-1}$. Then

 $1 \Vdash_{\mathbb{P}_\beta} \dot{h} \colon \omega \to \operatorname{ran}(\dot{f})$ is surjective.

For each $n < \omega$, let D_n denote the set of all $p \in \mathbb{P}_{\beta}$ that decide $h(n)$.

Let $h_n: D_n \to \text{Ord}$, where $h_n(p)$ is the unique δ such that $p \Vdash \dot{h}(n) = \delta$. *hn* is a *∥*-homomorphism.

Since G_β witnesses that \mathbb{P}_β is uniformly narrow, $\langle G_\beta(h_n) | n < \omega \rangle$ consists of injective functions $G_{\beta}(h_n)$: ran $(h_n) \rightarrow \omega$.

Glue them to an injective function $i: \bigcup_{n<\omega} \text{ran}(h_n) \to \omega$.

Since 1p $\Vdash {\rm ran}(\dot f)\subseteq\bigcup_{\alpha<\theta}{\rm ran}(h_\alpha)$, ${\rm ran}(f)\subseteq\bigcup_{\alpha<\theta}{\rm ran}(h_\alpha)$ by the definition of $\dot f$.

Thus $i \upharpoonright \text{ran}(f) \to \theta$ is injective. Let $G_\gamma(f) := i \upharpoonright \text{ran}(f)$.

Narrow forcings

Case. *γ* is a limit.

Suppose that $f: \mathbb{P}_{\gamma} \to \text{Ord}$ is a partial $\|$ -homomorphism.

It suffices to show HOD*⃗*P*,^f |*= ran(*f*) *≤ θ*. Then take the least injective function $G_\gamma(f)\colon \text{ran}(f)\to \theta$ in $\text{\rm HOD}_{\vec{\mathbb{P}},f^*}$ Work in $\text{\rm HOD}_{\vec{\mathbb{P}},f^*}$

Otherwise $\text{ran}(f) > \theta$. We can assume $\text{ran}(f) = \theta^+$ by restricting *f*.

Let $s_\alpha \in [\gamma]^{<\omega}$ for $\alpha \in \text{ran}(f)$ be least in $[\text{Ord}]^{<\omega}$ such that there exists some $p \in \mathbb{P}_\gamma$ with support s_α and $f(p) = \alpha$. Let $\vec{s} = \langle s_\alpha | \alpha \in \text{ran}(f) \rangle$.

We can assume:

- All $p \in \mathbb{P}_{\gamma}$ with $f(p) = \alpha$ have support s_{α} .
- *⃗s* forms a ∆-system with root *r*.

Fix $\gamma' < \gamma$ such that $\alpha + 1 < \gamma_0$ for all $\alpha \in r$. Let $D := \{p \mid \gamma' \mid p \in \text{dom}(f)\}$ be the projection of dom(*f*) to P*γ′* .

```
Let g: D \to \text{Ord}, where g(p) := \alpha if
                   ∃q ∈ dom(f) (q ∣gamma' = p ∧ f(q) = α)
```
g well-defined by the next claim.

 $\text{Recall } g: D \to \text{Ord}, g(p) := \alpha \text{ if } \exists q \in \text{dom}(f) \text{ } (q \upharpoonright \gamma' = p \land f(q) = \alpha).$

Claim

If $u, v \in \text{dom}(f)$ with $u \upharpoonright \gamma' = v \upharpoonright \gamma' = p \in D$, then $f(u) = f(v)$.

Claim

g: \mathbb{P}_{β} → Ord is a partial *||*-homomorphism.

Claim

 $ran(f) = ran(g).$

The inductive hypothesis for *γ ′* yields an injective function *Gγ′* (*g*): ran(*g*) *→ θ*. Since $G_{\gamma'} , g \in \mathsf{HOD}_{\vec{\mathbb{P}},f'}$ we have $\mathsf{HOD}_{\vec{\mathbb{P}},f} \models \operatorname{ran}(f) = \operatorname{ran}(g) \leq \theta$, contradicting the assumption.

We're done!

 \Box

The next result uses a standard technique for symmetric models.

Let *L* be a first-order language and *M* an *L*-structure. Suppose that *G ⊆* Aut(*M*) is a group and *I* an ideal of subsets of *M*.

- \cdot A subgroup of *G* is called large if it contains $f_{\text{rx}}(A) = \{\pi \in \mathcal{G} \mid \pi | A = \text{id}\}\$ for some $A \in \mathscr{I}$.
- A subset *X* of *M* is called stable if there exists a large subgroup $\mathcal H$ of $\mathcal G$ such that $\pi[X] = X$ for all $\pi \in \mathcal{H}$.

Theorem (Karagila, Schweber)

In a model of ZFC*, let L, M, G and I be as above. There is a symmetric extension of the universe in which there exists an isomorphic copy N of M such that every subset of N k in the symmetric extension is a stable isomorphic copy of a subset of M^k .*

In addition, we can require:

- DC*<κ holds in the extension, if I is <κ-complete.*
- *The extension has no new λ-sequences for any prescribed cardinal λ.*

Theorem (Karagila, Schweber)

It is consistent with $ZF + DC$ *that there is a ccc₂ forcing which collapses ω₁.*

Proof sketch. We construct a symmetric model over a model of ZFC. Let $\mathbb P$ denote $Add(\omega, \omega_1)$ without 1. P is productively c.c.c.

 $\mathbb{P}_{\infty} := \bigoplus_{\langle n, \alpha \rangle \in \omega \times \omega_1} \mathbb{P}_{n,\alpha}$ is the lottery sum, where each $\mathbb{P}_{n,\alpha} \cong \mathbb{P}.$

Let *G* act on each $\mathbb{P}_{n,\alpha}$ individually for countably many $\langle n, \alpha \rangle$ at the same time. Let *I* be the ideal of countable subsets of P*∞*.

We get a symmetric extension *M* of *V* and working in *M*, an isomorphic copy of P*∞*, such that *M* is a model of DC and *ω*¹ remains uncountable in *M*.

We use the same notation for the copies.

For any subset A of \mathbb{P}^k_∞ , there is a countable $\alpha<\omega_1$ such that if $\alpha\leq\beta$ and $p(i) \in \mathbb{P}_{n,\beta}$ for any $p \in A^k$, $i < k$ and $n \in \omega$, then any condition q obtained by replacing *p*(*i*) by an arbitrary condition in P*n,β* is in *A*.

In *N*, $\mathbb Q$ consists of pairs $\langle t, \vec{b} \rangle$ such that:

\n- 1.
$$
t \in \omega_1^{\lt \omega}
$$
 and $\text{dom}(t) = n$.
\n- 2. $\vec{b} = \langle b_0, \ldots, b_{n-1} \rangle$ and $b_i \in \mathbb{P}_{i,t(i)}$.
\n

Let $\langle t, \vec{b} \rangle \leq \langle t', \vec{b}' \rangle$ if:

1. *t ′ ⊆ t*.

2. For all $i \in \text{dom}(t'), b_i \leq_{n,\alpha} b'_i$.

This two-step iteration first adds a surjection $f: \omega \to \omega_1$ and then forces with the product ∏ *⟨n,α⟩* P*n,α*. Forcing with Q collapses *ω*1.

A counterexample with $ccc₂$

To see that every antichain in $\mathbb Q$ is countable, let π be the projection of $\mathbb Q$ to $\omega_1^{\lt \omega}$ and $\pi_{n,\alpha}$ the projection to $\mathbb{P}_{n,\alpha}$.

Let *D* be an uncountable subset of \mathbb{O} .

It suffices to show that *π −*1 (*t*) *∩ D* is uncountable for some *t ∈ ω <ω* 1 , since it i s a subset of $\{t\} \times \prod_{i \in \text{dom}(t)} \mathbb{P}_{i,t(i)}$ and $\mathbb{P} = \text{Add}(\omega,\omega_1)$ is productively ccc.

Case

 $\pi(D)$ is countable. Then by <mark>DC</mark>, there exists some $t \in \omega_1^{<\omega}$ such that *π −*1 (*t*) *∩ D* is uncountable.

Case

π(*D*) is uncountable. We can assume that for some *k* $∈ ω$, dom(*t*) = *k* for all *t* ∈ *π*(*D*) by shrinking *D*. We can then identify *D* with a subset of \mathbb{P}^k_{∞} .

- Pick $\alpha < \omega_1$ as above by stability of *D*.
- \cdot Since $\pi(D)$ is uncountable, there exists some $t \in \pi(D)$ with $t(i) \geq \alpha$ for some $i < k$. Then $\pi^{-1}(t) \cap D$ is uncountable.