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Variants of the ccc

We aim for:

- Avariant of the ccc the preserves cardinals and cofinalities

- An iteration theorem this variant



Variants of the ccc

The ZFC argument why a ccc (wy-cc) forcing preserves w; uses both
regularity of wy and the existence of maximal antichains:

- Suppose 1forces that f: w — w! is surjective.
- Pick a maximal antichain of pi, for i € w such that pi, IF f(n) = a.

- Then ran(f) is bounded by sup, e, af < wr.

In ZFC, a forcing has the x-cc if there exist no antichains of size k.
However, there are other equivalent formulations.



Variants of the ccc

Definition (Karagila, Schweber)
- cccq: Every maximal antichain in P is countable.
- CCCy: Every antichain in P is countable.
- cccy: Every predense subset of IP contains a countable predense subset.

Moreover, ccc” means ccg; restricted to wellordered antichains, or predense subsets,
of P.

- These notions are equivalent for well-orderable forcings.

Karagila and Schweber showed that the implications
€CC3 = CCCy = CCCq

are provable in ZF, but none of these implications can be reversed in ZF + DC.
Moreover, ccc, forcings can collapse wy.

Exercise

There exists a cccj forcing collapsing wy if there is no wy-sequence of distinct reals.



Variants of the ccc

The following theorem of Bukovsky gives us a new variant of the ccc.

Theorem (Bukovsky)

Suppose that V C W are models of ZFC. Then W is a generic extension of V by a ccc
forcing if and only if for every x € V.and f: x — V in W, there exists a function g: x — V
such that

1. VE|g(u)| <w forallu € x, and

2. WEf(u) € g(u) forallu € x.
Their theorem holds for the s-cc for other regular  as well.

Lemma (Karagila, Schweber)
cccs implies BukowsRy's condition.

Problem (Karagila, Schweber)
Does Bukowsky’s condition imply cccs?



Variants of the ccc

Proposition (Karagila, Schweber)
If P satisfies Bukovsky's condition, then P preserves any cardinal & > ws. If w;
is regular, then it is not collapsed.

Proof sketch. Suppose that k < X are cardinals and f: kK — X is a surjective
function in V[G].

Pick some F: k — [A]<*" such that f(«) € F(«) for all a < . Since fis
surjective, U, ., F(a) = A.

But | J,_,. F(o) has size at most & - w1 = k.

If wy is regular, Kk = w and A = wy, then ,,_,, F(n) is countable. O

n<w

Problem (Karagila, Schweber)
Is it consistent that a cccs forcing collapses wy?

The above variants of the ccc do not seem to suffice.



Linked forcings

We'd like to isolate a variant of the ccc that includes all o-linked forcings.
Exercise

o-linked forcings preserve all cardinals.

Definition

A forcing P is o-linked (w-linked) if there exists a (linking) function f: P — w such that
forallp,q € P:

fip)y=faq)=rlaq

P is split into countably many pieces, each one consisting of pairwise compatible
conditions.

The definition of «-linked is analogous.
Example
Hechler forcing is o-linked:
1:={(s,f)|s€ew<”, few’, sCf}
where (t,g) < (s,f) ifs C tand f(n) < g(n) foralln € w.

Every o-linked forcing satisfies ccc,.

Problem
Does every o-linked forcing satisfy cccs?



Linked forcings

The definition of x-linked could say

pLg = f(p) # ().
We equip Ord with the discrete partial order =. This suggests a
generalisation of k-linked relative to a forcing Q:

Definition

P is Q-linked if there exists a L.-homomorphism f: P — Q, i.e., such that for
allp,ge P

pLqg = f(p)Lf(q).

In ZFC, if P is Q-linked and Q is ccc, then PP is ccc.



Linked forcings

Exercise

\

Well-ordered c.c.c. forcings preserve cardinals.
(To see this, work in HOD with the relevant parameters.)

C:={p|p:n—2,n€ w}denotes Cohen forcing and C* the finite support product
of Kk many copies. They are well-ordered. This goes further:
Lemma

Suppose that P is Q-linked and Q is well-ordered and c.c.c. Then P preserves all
cardinals.

Proof sketch. Suppose that 1p I+ f w — & IS surjective.

letg: P — Q be a L-homomorphism. Define g IF* o < 3p f(p) =qApIF .

- If g IF* ¢, g’ IF* 2 and ¢, 4 are contradictory, then g_Lq’, since
pl-oAp' Ik = plp" = f(p)Lf(p').

- Let A, be a maximal antichain of g € Q with g IF* “f(n) = a*

- This can be done in M := HOD{]P,@f}' since Q C M.

- In M, w{is regular, U, ., An is countable and wy <* U, ,, An. O



Linked forcings

Exercise
Let P, denote a with the discrete partial order. Then []

a<w; Pa collapses wy.
We therefore need a uniformity requirement on an iteration.

A product or iteration of o-linked forcings is called uniform if it comes with a
sequence of names for linking functions.
Theorem
Any uniform finite support iteration of o-linked forcings of length k is C*-linked.
Hence cardinals are preserved.
Problem
Do Cohen and Hechler models over V have different theories?
- A Cohen model is a C*-generic extension for some k > w;.

- A Hechler model is obtained by a finite support iteration of H of some length
K > wy.

Woodin's argument that Cohen and random models have different theories uses Truss’
result that Cohen and random reals don't commute.



Linked forcings

Proposition (cont.)
Any uniform finite support iteration of o-linked forcings of length « is
C"-linked.

Proof idea. Let (P,,P.,fu | @ < k) denote such an iteration, where f,, is a
P..-name for a o-linking function for P,.

Show that the set I’ of all p € P, such that for all « € supp(p), p|« decides
fa(p(a)), is dense.

Use the values of these functions to read off a L.-homomorphism from P to
the set Fun—.,(x,w) of finite partial functions p: kK — w.

Fun<.(x,w) can be densely embedded into C". -

1



Narrow forcings

The following is just the ccc; for B(PP).
Definition

Pis called (w, 1)-narrow if all partial ||-homomorphisms f: P — Ord have
countable range.

- A partial [[-homomorphism f corresponds to a function on the set D all
p € P deciding a statement, for instance p I- g(n) = «p. fsends p € D
1o ap.

- A partial [[-homomorphism f can be thought of a generalised antichain
consisting of “blocks” f~'(«). Different blocks are incompatible.

- In a complete Boolean algebra, a partial |[-homomorphism corresponds
to an antichain, since subsets A and B of IP are elementwise
incompatible if and only if sup(A) is incompatible with sup(B).

However, when trying to prove cardinal preservation via a function
f:w— wy, an w-sequence of such homomorphisms appears.

This is captured by a uniform version of cccy for many homomorphisms. n



Narrow forcings

Definition
1. Suppose that v is an ordinal.
Pis called (w, v)-narrow if for any Sequencef: (fi | i < ) of partial
|[-homomorphisms f;: P — Ord, where u < v,

| ran(f)] < |max(w, 12)]-

I<p
2. Pis called w-narrow or just narrow if it is (w, v)-narrow for all v.

Exercise
(w, T)-narrow implies (w, v)-narrow for all v > ws.



Narrow forcings

Lemma
Every (w,1)-narrow forcing P preserves all cardinals and cofinalities >ws.

Proof sketch. Let A\ > w, be a cardinal.

Suppose that i < Xis a cardinal and p IFp f 1 — A is surjective”
- For each a < g, let D., be the set of g < p deciding f().
- Letfo: Do — A send g to the unique 8 < A with g I+ f(a) = B.

- Each f, is a partial [|-homomorphism.
Since P is (w, 1)-narrow, otp(ran(f,)) < ws for each o < p. Hence

| ran(fu)l < Imax(wi, p)] < A.

a<p
But U, , ran(fa) = A.
A similar argument works for cofinalities. O
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Narrow forcings

Lemma
Every narrow forcing P preserves all cardinals and cofinalities.

Proof. It suffices to show that P preserves w;.

Suppose that p IFp f w — wq IS surjective”.

- Foreach n < w, let D, denote the setof g <p decidingj‘(n).
- Letfy: Dn — wq send g to the unique 8 < wq with g I- j‘(n) =)

- Since P is narrow, we have |, ., ran(fn)| < w. But U, ., ran(fn) = wr.

A similar argument works for preserving cofinality w-. O



Narrow forcings

Exercise

Every o-linked forcing is (w, 1)-narrow. (Uses the next lemma.)

Lemma

IfQis (w,1)-narrow and f: P — Qis a L-homomorphism, then P is (w, 1)-narrow.
Proof. Suppose that g: P — Ord is a partial ||-homomorphism.

Let D := ran(f) and define h: D — Ord as follows.

- Forall p,r € P with f(p) = f(r), we have g(p) = g(r), since fis a
_L-homomorphism and g is a ||-homomorphism.

- For f(p) = g € D, we can thus define h(q) := g(p).
We claim that h is a partial ||-homomorphism.

- Suppose that g,s € D with f(p) = g, f(r) =sand g || s.
- Since fis a L-homomorphism, p || r.
- Since g is a |[-homomorphism, h(q) = g(p) || g(r) = h(s) as desired.

Since ran(g) = ran(h) and Q is (w, 1)-narrow, the claim follows. O
16



Narrow forcings

We need a stronger variant of narrow and a uniformity requirement for an
iteration.
Definition

P is called uniformly narrow if there exists a function G that sends each
partial ||-homomorphism /: P — Ord to an injective function

G(f): ran(f) — w.
A uniform iteration comes with a sequence of functions G,.

Theorem
A uniform iteration of uniformly narrow forcings with finite support is again
uniformly narrow.

Example

One can iterate combinations of C*, o-linked forcings such as Hechler
forcing or eventually different forcing and (as we see later) random algebras,
while preserving cardinals and cofinalities.



Narrow forcings

Theorem (cont.)
A uniform iteration of uniformly narrow forcings with finite support is again
uniformly narrow.

Proof. Let P = (P, 3,35 | o < 6,8 < §) denote the iteration.

We construct a sequence (G, | v < §) of functions by recursion on v < ¢
from P and 0, where G-, witnesses that P, is uniformly narrow.

Case. v is a successor.
Suppose that v = 8+ 1and G4 has been constructed. Let f: Pg % Pg — Ord
be a partial ||-homomorphism. and

f={((a®)",p) | f(p,a) = a}.

Claim _ .
e, forces that fis a partial ||-homomorphism on Pg.



Narrow forcings

f=1((g.4)",p) | f(p,a) = a}.

Claim (cont.) _
1p, forces that fis a partial ||-homomorphism on Pg.

Proof. Suppose that G is Pg-generic over V.

In V[G], take qo, g € Pg with j‘G(q,») = a; for i < 2. Suppose that go||g.
- There exist g; with g7 = g, and p; € G with ((g;, &)°®, pi) € ffori<2.
- Since qol|g1, some p € G forces Go||q1.
- Since we can assume p < po, p1, we have (po, qo)|[(p1. G1).

- a0 = f(po, Go) = f(p1,G1) = a, since fis a ||-homomorphism. O
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Narrow forcin

Claim (cont.) .
Tpg forces that f is a partial ||-homomorphism on Pg.

By the claim,
1lke, Gp(f): ran(f) — wis injective.

We can read off a Pg-name h for a function extending gﬁ(})—r Then

1lhpg, h:w— ran(j‘) is surjective.

For each n < w, let Dy denote the set of all p € Pg that decide h(n).

Let hy: Dy — Ord, where h(p) is the unique & such that p I- h(n) = 6.
hn is a ||-homomorphism.

Since Gg witnesses that Pg is uniformly narrow, (Gg(hn) | n < w) consists of injective
functions Gg(hn): ran(h,) — w.

Glue them to an injective function i: |, ran(hy) — w.
Since p IF ran(f) € Uy <q ran(ha), ran(f) C [, _, ran(ha) by the definition of f.
Thus ifran(f) — 6 is injective. Let G- (f) := i|ran(f).

20



Narrow forcin

Case. «y is a limit.
Suppose that f: Py — Ord is a partial ||-homomorphism.

It suffices to show HOD;; ; |= ran(f) < 6. Then take the least injective function
G~ (f): ran(f) — @ in HODH;f. Work in HODs (.

Otherwise ran(f) > 6. We can assume ran(f) = 6 by restricting f.

Let s € [y]<¥ for a € ran(f) be least in [Ord]<% such that there exists some p € P
with support s and f(p) = . Let S = (sq | @ € ran(f)).

We can assume:
- All p € P, with f(p) = o have support Sq.
- Sforms a A-system with root r.

Fixy" < ysuchthata+1< v foralla er. Let D:={ply' | p € dom(f)} be the
projection of dom(f) to /.

Letg: D — Ord, where g(p) := a if
3g € dom(f) (q17 =pAf(q) = @)
g well-defined by the next claim.

21



Narrow forcings

Recall g: D — Ord, g(p) := e if 3g € dom(f) (gl =p Af(q) = ).

Claim

If u,v € dom(f) with u[+y" = v|+’ = p € D, then f(u) = f(v).
Claim

g: Pg — Ord is a partial ||-homomorphism.

Claim

ran(f) = ran(g).

The inductive hypothesis for 4’ yields an injective function G./(g): ran(g) — 6. Since
G,,9 € HODg , we have HODg . = ran(f) = ran(g) < 0, contradicting the
assumption.

We're done! O
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A counterexample with ccc,

The next result uses a standard technique for symmetric models.

Let £ be a first-order language and M an L-structure. Suppose that
¢ C Aut(M) is a group and .# an ideal of subsets of M.

- A subgroup of ¢ is called large if it contains fix(A) = {w € 4 | 7[A = id}
forsome A € ..

- A subset X of M is called stable if there exists a large subgroup 7 of ¥
such that 7[X] = X for all = € JZ.

Theorem (Karagila, Schweber)

In a model of ZFC, let £, M, 4 and .# be as above. There is a symmetric
extension of the universe in which there exists an isomorphic copy N of M
such that every subset of N* in the symmetric extension is a stable
isomorphic copy of a subset of M".

In addition, we can require:
- DC.,. holds in the extension, if .% is <k-complete.

- The extension has no new A\-sequences for any prescribed cardinal \. -



A counterexample with ccc,

Theorem (Karagila, Schweber)
It is consistent with ZF + DC that there is a ccc, forcing which collapses ws.

Proof sketch. We construct a symmetric model over a model of ZFC. Let P
denote Add(w,w) without 1. P is productively c.c.c.

Poo := D (n,aycwxw, Pra is the lottery sum, where each Pn o = P.

Let 4 act on each P, . individually for countably many (n, «) at the same
time. Let .# be the ideal of countable subsets of P.

We get a symmetric extension M of V .and working in M, an isomorphic copy
of Pwo, such that M is a model of DC and wy remains uncountable in M.

We use the same notation for the copies.

For any subset A of P¥_, there is a countable o < w; such that if & < 8 and
p(i) € Pn g forany p € A¥ i < kand n € w, then any condition g obtained by
replacing p(/) by an arbitrary condition in P, g is in A.
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A counterexample with ccc,

In N, Q consists of pairs (t, b) such that:

1. t € w and dom(t) = n.

2. b= (bo,...,bo_1) and b; € Pi ).
Let (t,b) < (t',b') if:

1.t Ct

2. Foralli € dom(t'), b; <n.a bj.

1

This two-step iteration first adds a surjection f: w — wy and then forces with
the product [], .y Pn,a. Forcing with Q collapses ws.
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A counterexample with ccc,

To see that every antichain in Q is countable, let 7 be the projection of Q to
w¥ and 7, . the projection to Py 4.

Let D be an uncountable subset of Q.

It suffices to show that =~ '(t ) 71 D is uncountable for some t € w¥, since it
is a subset of {t} X []icgom(y Piy and P = Add(w,w) is productively ccc.
Case

7(D) is countable. Then by DC, there exists some t € w;* such that

7~ '(t) N D is uncountable.

Case
m(D) is uncountable. We can assume that for some kR € w, dom(t) = k for all
t € w(D) by shrinking D. We can then identify D with a subset of P_.

- Pick oo < wq as above by stability of D.

- Since (D) is uncountable, there exists some t € 7(D) with t(i) > o for
some i < k. Then 7~'(t) N D is uncountable.
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