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Outline

We explore properties of forcing over models of ZF such as ccc and closure
and their consequences.

This addresses a question asked by Asaf Karagila on mathoverflow (2012):

“I am looking for theorems such as c.c.c. forcing does not collapse
cardinals and similar theorems extended to the choiceless context if
possible, or the strength of choice needed for these theorems to hold.”

Several results are folklore and various joint with Daisuke Ikegami (not
attributed). Others by Woodin, Cunningham, Trang, Karagila and Schweber.

Detailed notes will be posted.
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Introduction



Mathematics without choice

Set theory without the axiom of choice means the axiom system ZF. One can
do quite some mathematics in ZF:

• Analysis: Many classical theorems such as the intermediate value
theorem

• Algebra: Results about countable groups and fields, for instance every
countable field has an algebraic completion

• Logic: Most results studied in second order arithmetic and reverse
mathematics

• Set theory: Transfinite induction and recursion
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Mathematics without choice

On the other hand, many important theorems do not work without choice:

• Measure theory: σ-additivity of Lebesgue measure

• Functional analysis: The Hahn-Banach theorem

• Algebra: Existence of maximal ideals in rings

• Logic: Existence of nontrivial ultrafilters on the natural numbers

• Set theory: Existence of uncountable regular cardinals
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Mathematics without choice

However, some models of set theory without choice have huge advantages.

The game G(X) for a subset X of ωω is played by players A and B.
They play natural numbers ni in turn. A wins if ⟨ni | i ∈ ω⟩ ∈ X.

Definition
The Axiom of Determinacy (AD) states that G(X) is determined for all X, i.e., A
or B has a winning strategy.

• Many difficult problems about projective sets, those definable over the
real numbers, were solved using AD.

• AD implies that all sets of reals are Lebesgue measurable.
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Mathematics without choice

The canonical model of AD is L(R), the constructible universe over the reals.

• L0 := tc({R})

• Lα+1(R) := Def(Lα(R))

• Lγ(R) :=
∪

α<γ Lα(R) for limits γ
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Forcing without choice

Forcing over L(R) has been used for various reasons.

1. Forcing over models of determinacy

• Introduced by Steel and Van Wesep (1982)
• Powerful machinery of Woodin’s Pmax-forcing and variants

2. Preserving determinacy by forcing

• Work of Chan, Jackson (2021), Ikegami and Trang (2023)

3. Combinatorics of ultrafilters on ω:

• Blass (1988) proved that an ultrafilter on ω is Ramsey if and only if
it is generic over L(R) for the forcing P(ω)/fin, aǒter a Levy collapse

• Work of Laflamme, Todorcevic and others.

4. Geometric set theory of Larson and Zapletal (2020)

• Separating consequences of choice
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Forcing without choice

Forcing over other specific choiceless models besides L(R) has been studied.

• Monro (1983) studied forcing over Cohen’s first model and preservation
of fragments of the axiom of choice.

We aim for tools that work for any model of ZF.

In particular when the Axiom of Dependent Choice (DC) fails. It fails for
example in these models:

• Cohen’s first model

• Gitik’s model (1980) where all uncountable cardinals have countable
cofinality. .
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Forcing without choice

In any generic extension of Gitik’s model, all uncountable cardinals have
countable cofinality and hence ACω fails.

So one cannot force AC.

Note that every infinite cardinal having countable cofinality is the extreme
opposite to models with large cardinals.

But this property has large cardinal strength.
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Forcing without choice

The following results characterise the possibility of forcing choice:

Theorem (Blass 1979)
TFAE

1. ∃S ∀X ∃g : S× Ord → X is surjective (small violations of choice SVC).

2. There exists a forcing P such that 1P forces AC.

Theorem (Usuba 2022)
TFAE

1. There exists an inner (i.e., transitive class) model M of ZFC and a set X
such that V = M(X), where M(X) denotes the least transitive model N of
ZF with M ⊆ N and X ∈ N.

2. There exists a forcing P such that 1P forces AC.
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Forcing without choice

Theorem (Karagila 2017)
If x is a Cohen real over L, then there is an intermediate model L ⊆ M ⊆ L[x],
the Bristol model, that is not of the form L(X) for a set X.

It follows from Usuba’s result that choice cannot be forced over M.
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Part 1. Adding Cohen subsets
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Preliminaries

Suppose that A and B are sets.

• A ≤ B means there exists an injective function f : A → B.

• A ≤∗ B means there exists a surjective function g : B → A.

• It is not known if A ≤∗ B ⇔ A ≤ B for all sets implies the axiom of
choice (partition problem).

All cardinals are ordinals.

• Hartog’s number ℵ(x) is the least ordinal α with α ̸≤ x.

• Lindenbaum’s number ℵ∗(x) is the least ordinal α with α ̸≤∗ x.

Exercise
Prove that ℵ(x) and ℵ∗(x) exist for every set x and ℵ(x) ≤ ℵ∗(x).
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Preliminaries

A tree T is a set of sequences, closed under initial segments.
• T is <δ-closed if every strictly increasing sequence in T of length α < δ

has an upper bound in T.

Definition

1. Suppose that κ ∈ Card. The axiom of choice ACκ for families of size κ

states:

For any F : κ → V with F(α) ̸= ∅ for all α < κ, there exists a function
f : κ → V with f(α) ∈ F(α) for all α < κ.

2. Suppose that δ ∈ Ord and A is a class. The axiom of dependent choice
DCδ(A) for sequences of length δ states:

Any <|δ|-closed tree T without end nodes on A has a branch of length δ.
DCδ denotes DCδ(V). DC denotes DCω .
DC<δ(A) and DC<δ are defined in the obvious way.
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Preliminaries

Exercise
Suppose that γ ∈ Ord and A is a set with Aγ ≤∗ A. Then DCγ(A) ⇒ DCδ(A) for
all δ < γ+. In particular for A = 2γ .

Definition
A set X is called Dedekind finite if it is infinite and there exists no injective
function f : ω → X.

Exercise
DC implies that there exist no Dedekind finite sets.
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Preliminaries

Lemma (Boolos 1974)
DC holds if and only if for every infinite cardinal θ, there exists a countable
elementary substructure M ≺ Vθ .

Proof sketch. If DC holds, the usual construction of elementary
substructures goes through.

Conversely, suppose that T is a tree without end nodes.

• Pick α such that T ∈ Vα and let M ≺ Vα be countable elementary.

• T ∩M is a tree without end nodes.

• Using a bijection ω → T ∩M, find an infinite branch of T.

Properness may become vacuous without DC (Aspero, Karagila).
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Preliminaries

A quasi-order P = (P,≤) is a transitive reflexive relation.

• p, q ∈ P are compatible if ∃r ≤ p, q and otherwise incompatible.

A forcing is a quasi-order that is separative: p ̸≤ q ⇒ ∃r ≤ p q⊥r.

We fix a canonical name {ẋ | ẋ ∈ X}• for {ẋ | ẋ ∈ X}.

Basic properties of forcing including the forcing theorem work in ZF just like
in ZFC.

Note: Fullness p ⊩ ∃x φ(x) ⇒ ∃σ p ⊩ φ(σ) implies AC (Miller).
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Preliminaries

Any forcing P is densely embedded into the complete Boolean algebra
B := B(P), the set of all regular open subsets of P.

A B-valued model of ZF is constructed as

• VB0 = ∅

• VBα+1 = {f : VBα → B}

• VBλ =
∪

α<λ V
B
α for limits λ

with union VB. VB believes it is a P-generic extension of a ground with the
theory of V. (These statements hold in VB/U, where U is any ultrafilter on B.)

We can therefore safely work with P-generic filters G over V.

20



Preliminaries

Lemma
DC suffices to show that every σ-closed forcing preserves ω1.

Proof. Suppose that p ⊩ ḟ : ω → ω1 is surjective.

• Find p = p0 ≥ p1 ≥ . . . such that pn decides ḟ(n) for all n ∈ ω.

• Let q ≤ pn for all n. Then q decides all values of ḟ.

Exercise
Suppose that ω1 is singular. Show that

Add(ω1, 1) := {p : α → 2 | α < κ}

collapses ω1.

If ω1 is regular, but DC(2ω) fails, then Add(ω1, 1) adds new reals.
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Symmetric models

Let P be a notion of forcing and π be an automorphism of P. Then π acts on
P-names via

πẋ = {⟨πp, πẏ⟩ | ⟨p, ẏ⟩ ∈ ẋ}.

Suppose that G is a group of automorphisms of P.

• A filter of subgroups over G is a nonempty family F of subgroups of G

closed under finite intersections and supergroups. F is normal if
whenever H ∈ F and π ∈ G , then πHπ−1 ∈ F as well.

• We call ⟨P,G ,F ⟩ a symmetric system if P is a forcing, G is a subgroup
of Aut(P) and F is a normal filter of subgroups of G .

• ẋ is called F -symmetric if its stabiliser

symG (ẋ) := {π ∈ G | πẋ = ẋ} ∈ F ,

and hereditarily F -symmetric if this holds hereditarily for names in ẋ.
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Symmetric models

The class HSF denotes the class of all hereditarily F -symmetric names. We
usually omit the subscript F .

Lemma (Symmetry lemma)
Suppose that p ∈ P, π ∈ Aut(P) and ẋ is a P-name. Then

p ⊩ φ(ẋ) ⇐⇒ πp ⊩ φ(πẋ).

Theorem
Suppose that G is a P-generic filter over V. Then

M := HSG := {ẋG | ẋ ∈ HS}

is a transitive class model of ZF in V[G] such that V ⊆ M.

HSG is called a symmetric extension of V.
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Cohen’s first model

Suppose that V is a model of ZFC and P is

Add(ω, ω) := {p | p : ω × ω → 2 is a finite partial function}.

The group G consists of all finitary permutations of ω acting on the first
coordinate of P via

πp(n, πm) = p(n,m).

F is the filter of subgroups generated by {fix(E) | E ∈ [ω]<ω}, where

fix(E) := {π ∈ G | π ↾ E = id}.

If fix(E) ⊆ sym(ẋ), then E is called a support for ẋ.

For each n ∈ ω,
ȧn := {⟨p, m̌⟩ | p(m,n) = 1}

is a name for the nth Cohen real and Ȧ := {ȧn | n ∈ ω}• is a name for the set
of them.

We have πȦ = Ȧ, since πȧn = ȧπn for all π ∈ G . Hence Ȧ ∈ HS.

Exercise
1 ⊩ Ȧ is Dedekind finite. 24



Dedekind finite sets

Let M denote Cohen’s first model.

Let f : ω → 2 be a finite partial function, and let q̇f denote the following
name:

q̇f =
{
⟨ȧn, ˇf(n)⟩• | α ∈ dom(f)

}•
.

Q̇ := {q̇f | f : ω → 2 is a finite partial function}• is a name for Add(κ, 1)M,
since any q ∈ Add(A, 1) equals qG

f for some f.

Proposition (Karagila, S.)
Add(A, 1) does not add new sets of ordinals over M.

Proof. Let Ẋ ∈ HS be a P-name for an Add(A, 1)-name for a set of ordinals.
Any π ∈ G acts on P ∗ Add(Ȧ, κ̌)• via

π⟨p, q̇f⟩ = ⟨πp, πq̇f⟩ = ⟨πp, q̇f◦π⟩.

We write ⟨p, q̇f⟩ ⊩HS φ to mean that p forces that q̇f ⊩ φ holds in V(A).
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Dedekind finite sets

Theorem (Karagila, S.)
Add(A, 1) does not add new sets of ordinals over M.

Proof (cont.)

Suppose that ⟨p, q̇f⟩ ⊩HS “Ẋ is a set of ordinals”.

Let E be a support for Ẋ. Then E is a finite subset of ω with fix(E) ⊆ sym(Ẋ).
We can assume supp(p) = E = dom(f).

Suppose that ⟨p0, q̇f0⟩ and ⟨p1, q̇f1⟩ are two extensions of ⟨p, q̇f⟩. Assume that
supp(pi) = dom(fi) for i < 2.

We claim that Ẋ is a name for a set in M. It suffices to show that if
p1 ↾ E = p2 ↾ E, then p0 and p1 must agree on any statement of the form
α̌ ∈ Ẋ.

This holds since there exists an automorphism π ∈ fix(E) moving supp(p0) \ E
to be disjoint of supp(p1), so ⟨πp0, πq̇f0⟩ is compatible with ⟨p1, q̇f1⟩ while
πα̌ = α̌ and πẊ = Ẋ.

So Ẋ only depends on the first component of the filter. 26



Dedekind finite sets

For other models and some Dedekind finite sets A, Add(A, 1) may add new
reals.

For instance, Cohen’s second model N witnesses a failure of ACω by a
sequence ⟨Fn | n ∈ ω⟩ of pairwise disjoint finite sets.

• The union A of these sets is Dedekind finite and cannot be linearly
ordered.

• Forcing with Add(A, 1) over N adds a function g : A → 2. Then

{n ∈ ω | g[Fn] = {0}}

is a Cohen real over N.

One can precisely characterise for which A this happens (Karagila, S.).
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Cohen subsets

We now turn to adding Cohen subsets of cardinals. (Recall that all cardinals
are wellordered.) The forcing is

Add(κ, 1) := {p : α → 2, α < κ}

ordered by reverse inclusion.

Add(κ, 1) is not <κ-closed if κ is singular. However, for successors κ = ν+ it
is equivalent to the <κ-closed forcing

Add∗(κ, 1) := {(p, q) | p ∈ Add(κ, 1), q : dom(p) → ν is bijective}

ordered by reverse inclusion in the first coordinate.

Exercise
Show that Add(ω1, 1) wellorders the reals, and collapses ω1 if ω1 is singular.
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Cohen subsets

A forcing P is called <λ-distributive if for any sequence ⟨Ui | i < α⟩ of dense
open subsets of P of length α < λ,

∩
i<α Ui ̸= ∅.

A λ-distributive forcing does not add element of Vλ. The converse
implication may fail (Karagila, Schilhan).

Lemma (folklore)
For any infinite cardinal λ, TFAE

• DCλ.

• Every <λ+-closed forcing is <λ+-distributive.

Proof. Using DCλ, we can find a sequence ⟨pi | i < λ⟩ with pi ∈ Ui for all
i < λ. Any lower bound p of this sequence is in

∩
i<λ Ui.

Conversely, if DCλ fails then there exists a <λ-closed tree T with no
λ-sequences, so T is <λ+-closed. Forcing with (T,≥) adds a new
λ-sequence, so T cannot be <λ-distributive.

29



Cohen subsets

Lemma
Suppose that λ ∈ Card and P = Add(λ+, 1). TFAE

1. DCλ(2λ).

2. P is λ-distributive.

3. P does not change Vλ.

Proof. 1⇒ 2⇒ 3 are as in the previous lemma.

3⇒ 1: P wellorders (2λ)<λ. Thus the given tree T has a λ-branch in the
extension. Since P does not change Vλ, this branch is in V.
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Cohen subsets

Proposition
Suppose that λ ∈ Card and P = Add(λ+, 1). TFAE

1. DCλ(2λ).

2. P preserves all cardinals α ≤ λ+ and the cofinality of all ordinals α ≤ λ+ .

3. P preserves λ+ as a cardinal.

4. P forces that λ+ is regular.

Proof. 1⇒ 2 holds by the previous lemma and 2⇒ 3 is clear. 3⇒ 4 holds since P
wellorders 2λ .

4⇒ 1: Let ν ≤ λ be least such that P adds new elements to Vν . Then ν is regular. It
suffices to show that P is ν-distributive.

Suppose that ⟨Ui | i < ν⟩ ∈ V is a sequence of dense open subsets of P and G is a
P-generic filter over V.

Since P does not change V<ν , construct a strictly decreasing sequence ⟨pi | i < ν⟩
with pi ∈ Ui ∩ G in V[G].

Since λ+ is regular in V[G] and ν < λ+ , p :=
∪

i<ν pi is the unique condition in G of
length µ. In particular, p ∈ V. 31



Cohen subsets

The previous tells us only whether λ+ is preserved.

Problem
Suppose that Add(λ+, 1) collapses λ+. Which combinations of cardinals ≤λ

can be preserved or collapsed?

Problem
Can Add(ω2, 1) preserve ω1 while DC(2ω) fails?
Is this true over Cohen’s first model?
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Cohen subsets over L(R)

We now force over L(R).

Note that the theory of L(R) does not change when forcing over a model V of
ZFC if there is a proper class of Woodin cardinals in V.

• In this setting, L(R) satisfies the axiom of determinacy AD.

• In L(R), AD implies DC by a result of Kechris.

However, we force over L(R) and in general L(R)[G] ̸= L(R)V[G], since
RV /∈ L(R)V[G] in the above situation.
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Cohen subsets over L(R)

Suppose that AD holds in L(R).

A Cohen real x over L(R) preserves cardinals. The usual proof for ccc forcings
works, since Cohen forcing is wellordered.

A Cohen subset of λ+ over L(R) collapses λ+ by the previous proposition,
since DCω1(2ω) fails

Problem
Which cardinals ≤λ does Add(λ+, 1) preserve or collapse?
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Cohen subsets over L(R)

One can ask whether adding a Cohen subset preserves AD.

A Cohen real x over L(R) destroys AD (Ikegami, Trang). This follows from a
result of Kunen that RV doesn’t have the Baire property in a Cohen extension.

Proposition (Chan, Jackson, Goldberg 2021)
Any well-ordered forcing in L(R) that adds new reals destroys AD.

Proof sketch. In V[G], take a perfect tree T with [T] ⊆ (2ω)V.

• For each p ∈ P, let Ap be the set of x ∈ 2ω such that p ⊩ x ∈ [T].

• Some Ap is uncountable, since a wellordered union of meager sets is
meager by Kuratowski-Ulam and the Baire property.

• Take a perfect tree T′ with [T′] ⊆ Ap. Then p ⊩ [T′] ⊆ [T]. Since P adds
new reals, it adds a new element of [T′].

A Cohen subset of λ+ over L(R) destroys AD, since it forces AC.
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Cohen subsets over L(R)

However, there is a useful method of forcing with Add(κ, 1)HOD without collapsing κ.
It uses that one can force choice by a σ-closed forcing.

Definition
Suppose that M is a transitive model and A ⊆ κ. A is a fresh subset of κ over M if A /∈ M, but
A ∩ α ∈ M for all α < κ.

Theorem (Cunningham 2023)
Suppose that V is a model of ZFC, L(R) |= ZF+AD and κ > |R| is a regular cardinal.
If A is a fresh subset of κ over L(R), then L(R)[A] does not have new sets of reals and is a model of
AD.

Proof sketch. Suppose that B ∈ L(R)[A] is a set of reals. B is definable over some Lα(R)[A] from a
real and an ordinal. Assume no parameters are used.

If α < κ, then Lα(R)[A] = Lα(R) since A ⊆ κ is fresh and thus B ∈ L(R).

If α ≥ κ, fix an operator H in V for Skolem hulls in Lα(R) and let

Hξ := HLα(R)[A](R ∪ {ξ})

for ξ ∈ Ord. Let M0 := H0 , ξn := Mn ∩ κ and Mn+1 := Hξn .
• M :=

∪
n∈ω Mn ≺ Lα(R) and ξ := M ∩ κ ∈ κ, since κ is regular.

• The transitive collapse N of M equals Lβ(R)[A ∩ ξ] for some β < κ.
• B ∈ L(R)[A], since B is definable over N.

36



Cohen subsets over L(R)

Theorem (Cunningham 2023)
Suppose that L(R) |= ZF+AD and κ > (ℵ∗(R)+)L(R) is regular. Suppose that in HODL(R) ,

1P ⊩ “κ is a regular cardinal”

and the P-generic filter is a fresh subset of κ. Then P preserves regularity of κ and AD over L(R).

Proof sketch. We assume κ is sufficiently large. One can check that κ remains regular in L(R)[H].

Suppose that G × H is P × Col(ω1,R)-generic over L(R).

The subset A of κ given by G is a fresh subset of κ over L(R).

By the previous theorem, it suffices to show that κ is regular in L(R)[G × H].

We have M := HODL(R) = HODL(R)[H] , since Col(ω1,R) is homogeneous.

Let Q denote the Vopenka forcing in M for subsets of ω1 . Then the subset B of ω1 given by H is
Q-generic over M.

Since B codes all reals, L(R)[H] = M[H] is a Q-generic extension of M and

M[G][H] = M[H][G] = L(R)[G × H].

By assumption, κ remains regular in M[G]. If κ > |Q|M , then κ is regular in M[G][H].
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Cohen subsets over L(R)

Ikegami and Trang (2023) improved the assumption in the previous theorem
for κ ≥ ℵ∗(R). This is optimal by results of Chan and Jackson (2021).

Their work was motivated by the problem:

Problem (Ikegami, Trang 2023)
Can there exist an elementary embedding j : V → V[G] with critical point ω1
such that (V,∈, j) is a model of AD?
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