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Abstract. We describe known results about properties of forcings such as chain conditions

and their effect on generic extensions, in particular over models where DC fails. Some of

this is taken from joint work with Daisuke Ikegami.
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1. Introduction

We survey known results, some folklore and some recent, about forcing over arbitrary models
of ZF, in particular about adding Cohen subsets, variants of the countable chain condition and
generic absoluteness. Some of them address a question asked by Asaf Karagila on mathoverflow
(2012): “I am looking for theorems such as c.c.c. forcing does not collapse cardinals and similar
theorems extended to the choiceless context if possible, or the strength of choice needed for
these theorems to hold.”

1. Cohen subsets. We show that forcing with Add(A,1) depends heavily on A and frag-
ments of choice. We look at Add(A,1) for a Dedekind finite set A in Cohen’s first model.
We characterise when Add(λ+,1) preserves λ+ by fragments of DC. Since Add(λ+,1)
collapses λ+ over L(R), we force with Add(κ,1)HOD.

2. Chain conditions. We discuss variants of the ccc and whether they preserve cardi-
nals. We prove an iteration theorem for a variant of the ccc. We discuss Karagila and
Schweber’s result that ccc2 forcing can collapse ω1.

3. Generic absoluteness. We study very strong generic absoluteness principles that are
inconsistent with choice and their consequences. We study Gitik’s model where all infinite
cardinals have countable cofinality.

4. Random algebras. We prove that random algebras with κ many generators are com-
plete and satisfy a version of the ccc. We show that several results above can be applied
to them.

This includes work of Woodin, Cunningham [Cun23], Ikegami, Trang [IT23], Karagila and
Schweber [KS22]. Besides the work mentioned here, there has been recent work on properties
of forcings over arbitrary models of ZF by Karagila and Schilhan [KS23].
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Forcing over models of ZF up to the forcing theorem is the same for ZFC. This can be found
in [Kun14] and the Boolean-valued approach in [Jec03, HS12]. Symmetric models and Cohen’s
first model (the Halpern-Levy model) are studied in [Jec08].
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2. Preliminaries

All models are models of ZF. A forcing is a set quasi-order P with ≤ (partial order without
reflexivity) with a maximal element 1P. We write p ∥ q if p and q are compatible, i.e., there
exists some r ≤ p, q, and p ⊥ q if they are incompatible. If P is separative, i.e., p /≤ q implies
∃r ≤ p r ⊥ q, then P is dense in its Boolean completion B(P), the set of regular open subsets of P.
If P is not separative, we form its separative quotient Psep by letting p ∼ q if ∀r (p ∥ r⇔ q ∥ r)
and work with B(Psep). If ⟨xi ∣ i ∈ I⟩ is a family of P-names, {xi ∣ i ∈ I}● ∶= {(1P, ẋi) ∣ i ∈ I} is
a name for {ẋi ∣ i ∈ I}.

For sets A and B, A ≤ B means there exists an injective function f ∶A → B. A ≤∗ B means
there exists a surjective function g∶B → A. The partition principle states that A ≤∗ B implies
A ≤ B for all sets A and B. One of the oldest open problems in set theory asks whether the
partition principle implies the axiom of choice.

A tree T on a set A consists of sequences of elements of A ordered by end extension.

Definition 2.1. Suppose that κ ∈ Card and δ ∈ Ord.

1. The axiom of choice ACκ for families of size κ states that for any F ∶κ→ V with f(α) ≠ ∅
for all α < κ, there exists a choice function f ∶κ→ V with f(α) ∈ F (α) for all α < κ.

2. Suppose that A is a class. The axiom of dependent choice DCδ(A) for trees on A states
that any <κ-closed tree T on A1 (i.e., such that every strictly increasing sequence in T
of length α < δ has an upper bound) has a branch of length δ. DCδ denotes DCδ(V ).
Finally, DC<δ(A) and DC<δ are defined in the obvious way.

3. The axiom of determinacy AD states that any two-player game with perfect information
of length ω with moves in ω is determined, i.e., one of the players has a winning strategy.

Exercise 2.2. Suppose that κ ∈ Card, γ ∈ Ord, δ < γ+ and A, B are classes.

1. DCκ implies ACκ.
2. DCλ(A) implies DCκ(A) for κ ≤ λ.
3. DCγ(A) for all sets A implies DCγ .
4. If A ≤∗ B, then DCγ(B) ⇒ DCγ(A).
5. If Aγ ≤∗ A, then DCγ(A) ⇒ DCδ(A).

Every cardinal is an ordinal.

Exercise 2.3. DC suffices to show that every σ-closed forcing preserves ω1.

Exercise 2.4. DC holds if and only if for every infinite cardinal θ, there exists a countable
elementary substructure M ≺Hθ.

This shows that properness may become vacuous without DC. Aspero and Karagila showed
that DC suffices to show that proper forcings have the usual properties [AK21].

A set X is Dedekind finite if it is infinite and there exists no injective function f ∶N → X.
As usual, a set is finite if is has size n for some n ∈ N.

Exercise 2.5. DC implies that there exist no Dedekind finite sets.

Remark 2.6.

1. Dedekind finite sets of reals can exist in models of ZF. If A is such as set, then linearity
of ≤ breaks down immediately above the finite sets, since A and ω are incomparable.

2. ω1 may be measurable, in fact AD implies the club filter on ω1 is an <ω1-complete ultra-
filter on ω1 [Kan08].

3. ω1 may be singular. This holds in the L(R) of a Col(ω,<ℵω)-generic extension.
4. The set R of reals may be a countable union of countable sets. Then every set of reals is

a Borel set according to the usual definition of Borel sets in ZFC [Jec08].

Exercise 2.7. Suppose that ω1 is singular. Show that Add(ω1,1) = {p∶α → 2 ∣ α < κ} collapses
ω1.

1The height of T is arbitrary. If we consider only trees of height δ, the axiom is weaker.
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Even a single regular cardinal κ allows one to do some interesting forcings. For instance,
one can force the dominating number to be κ [IS22]. Models without any uncountable regular
cardinals seem particularly hard to force over. Gitik constructed such a model [Git80].

Here is a bit of information about forcing choice. One cannot force choice over Gitik’s model,
since an end segment of cardinals in the extension has countable cofinality. Blass and Usuba
characterised the possibility of forcing choice as follows.

Theorem 2.8 (Blass [Bla79]). The following statements are equivalent:

(a) ∃S ∀X ∃g∶S × Ord → X is surjective. This principle is called SVC (small violations of
choice).

(b) ∃S ∀X ∃f ∶X → S ×Ord is injective.
(c) There exists a forcing P such that 1P forces choice.

Theorem 2.9 (Usuba [Usu18]). The following statements are equivalent:

(a) There exists an inner (i.e., transitive class) model M of ZFC and a set X such that
V = M(X), where M(X) denotes the least transitive model N of ZF with M ⊆ N and
X ∈ N .

(b) V is a symmetric extension of some inner model M of ZFC.
(c) There exists a forcing P such that 1P forces choice.

Theorem 2.10 (Karagila [Kar18]). If x is a Cohen real over L, then there is an intermediate
model L ⊆M ⊆ L[x], the Bristol model, that is not of the form L(X) for a set X.

It follows from Usuba’s result that choice cannot be forced over M .
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3. Cohen subsets

3.1. Cohen subsets of Dedekind finite sets. We sketch how symmetric models are used
to construct models of ZF without choice from models of ZFC. Let P be a notion of forcing
and π be an automorphism of P. Then π acts on P-names via

πẋ = {⟨πp, πẏ⟩ ∣ ⟨p, ẏ⟩ ∈ ẋ}.
Suppose that G is a group of automorphisms of P. A filter of subgroups over G is a nonempty

family F of subgroups of G closed under finite intersections and supergroups. F is normal if
whenever H ∈ F and π ∈ G , πHπ−1 ∈ F as well.

We call ⟨P,G ,F ⟩ a symmetric system if P is a notion of forcing, G is a subgroup of Aut(P),
and F is a normal filter of subgroups over G . symG (ẋ) denotes the group {π ∈ G ∣ πẋ = ẋ}, the
stabiliser of ẋ. ẋ is called F -symmetric if symG (ẋ) ∈ F . If is called hereditarily F -symmetric
if this holds hereditarily for the names in ẋ. The class HSF denotes the class of all hereditarily
F -symmetric names. We usually omit the subscript F .

Lemma 3.1 (Symmetry lemma [Jec03, Lemma 14.37]). Suppose that p ∈ P, π ∈ Aut(P) and ẋ
is a P-name. Then

p ⊩ ϕ(ẋ) ⇐⇒ πp ⊩ ϕ(πẋ).

Theorem 3.2 ([Jec03, Lemma 14.37]). Suppose that G ⊆ P is a V -generic filter and M ∶=
HSG ∶= {ẋG ∣ ẋ ∈ HS}. Then M is a transitive class model of ZF in V [G] such that V ⊆M .

HSG is called a symmetric extension (of V ).
We briefly describe Cohen’s first model as an example of a model of set theory where the

axiom of choice fails. It is described in detail in [Jec08, Section 5.3]. Suppose that V is a model
of ZFC and P is Add(ω,ω). The group G consists of all finitary permutations of ω acting on
the first coordinate of P via

πp(πn,m) = p(n,m).
Moreover, F is the filter of subgroups generated by {fix(E) ∣ E ∈ [ω]<ω}, where fix(E) ∶= {π ∈
G ∣ π ↾E = id}. If fix(E) ⊆ sym(ẋ), we say that E is a support for ẋ.

For each n ∈ ω, ȧn ∶= {⟨p, m̌⟩ ∣ p(n,m) = 1} is a name for the nth Cohen real and Ȧ ∶= {ȧn ∣
n ∈ ω}● is a name for the set of them. We have πȦ = Ȧ, since πȧn = ȧπ−1n for all π ∈ G . Hence

Ȧ ∈ HS.

Proposition 3.3. 1 ⊩ Ȧ is Dedekind finite.

Proof. Suppose that ḟ ∈ HS and p ⊩ ḟ ∶ ω̌ → Ȧ. Let E be a support for ḟ , and without loss of
generality supp(p) ⊆ E as well.

We claim that p forces that the range of ḟ is a subset of {ȧn ∣ n ∈ E} and hence finite. To
see this, pick some n ∉ E. Suppose towards contradiction that q ≤ p is a condition such that
q ⊩ ḟ(m̌) = ȧn for some m < ω. Let j ∉ E∪supp(q) and π the 2-cycle (n j). Then the following
statements hold:

1. π ∈ fix(E) and therefore πp = p and πḟ = ḟ .
2. πȧn = ȧj .
3. πq ⊩ πḟ(πm̌) = πȧn and therefore πq ⊩ ḟ(m̌) = ȧj .
4. πq is compatible with q.

The last claim holds since j ∉ supp(q) and π only swaps the coordinates j and n. Thus,

q ∪ πq ⊩ “ȧn = ḟ(m̌) = ȧj”. This is impossible, since 1P ⊩ ȧn ≠ ȧj . �

We fix a P-generic filter G over V and write M ∶= HSG for the Cohen model. We write an
for ȧGn and A for ȦG. One can show as in [Jec08, Lemma 5.25 & Lemma 5.26] that M = V (A),
the smallest transitive subclass of V [G] that is a model of ZF, contains V and has A as an
element.

For a Dedekind finite set A, let Add(A,1) ∶= {p∶F → 2 ∣ F ⊆ A is finite } ordered by reverse
inclusion. We identify a subset of A with its characteristic function. So Add(A,1) adds a new
subset of A.
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Let f ∶ω → 2 be a finite partial function, and let q̇f denote the following name:

q̇f = {⟨ȧn, ˇf(n)⟩● ∣ α ∈ dom f}
●
.

Then Q̇ ∶= {q̇f ∣ f ∶ω → 2 is a finite partial function}● is a name for Add(κ,1)M . In particular,
if q ∈ Add(A,1), then there exists a finite partial function f ∶ω → 2 in V such that q = q̇Gf .

Theorem 3.4. Suppose that G is an Add(A,1)-generic filter over M . Then M and M[G]
have the same sets of ordinals.

Proof. Let Ẋ ∈ HS be a P-name for an Add(A,1)-name for a set of ordinals. Any π ∈ G acts

on P ∗Add(Ȧ,1)● via

π⟨p, q̇f ⟩ = ⟨πp, πq̇f ⟩ = ⟨πp, q̇f○π⟩.
We write ⟨p, q̇f ⟩ ⊩HS ϕ to mean that p forces that q̇f ⊩ ϕ holds in V (A).

Let ⟨p, q̇f ⟩ be a condition which forces that Ẋ is a name for a set of ordinals. Let E be a

support for Ẋ. Then E is a finite subset of ω with fix(E) ⊆ sym(Ẋ). We can assume that
supp(p) = E = dom f .

Suppose that ⟨p0, q̇f0⟩ and ⟨p1, q̇f1⟩ are two extensions of ⟨p, q̇f ⟩. Again, we can assume that
supp(pi) = dom fi for i < 2.

We claim that Ẋ is a name for a set in M . It suffices to show that if p1↾E = p2↾E, then p0 and
p1 must agree on any statement of the form α̌ ∈ Ẋ. This is because there is an automorphism
in fix(E) moving supp(p0) ∖ E to be disjoint of supp(p1), which means that ⟨πp0, πq̇f0⟩ is

compatible with ⟨p1, q̇f1⟩ while πα̌ = α̌ and πẊ = Ẋ. Here we use the fact that dom f = E and

dom fi = Ei for i < 2. It follows that if ⟨pi, q̇fi⟩ ⊩ α̌ ∈ Ẋ, then ⟨pi ↾E, q̇fi↾E⟩ = ⟨pi ↾E, q̇f ⟩ already
forces this statement. �

In particular, forcing with Add(A,1) over M preserves all cardinals and cofinalities.

Remark 3.5. In Cohen’s first model, every set is linearly ordered by results of Halpern and
Levy. Cohen’s second model N witnesses a failure of ACω by a sequence ⟨Fn ∣ n ∈ ω⟩ of pairwise
disjoint finite sets. In particular, the union A of these sets cannot be linearly ordered. We
now force with Add(A,1) over the model to add a function g∶A → 2. A density argument
shows that {n ∈ ω ∣ g[Fn] = {0}} is a Cohen real over N . So in contrast to the situation in
Cohen’s first model, Add(A,1) adds new reals. A result characterising when this happens for
an arbitrary Dedekind finite set A can be found in [KS20, Section 6].

3.2. Cohen subsets of cardinals. The forcing Add(κ,1) = {p∶α → 2, α < κ} ordered by
reverse inclusion is not <κ-closed unless κ is regular. However, studying Add(κ,1) for successors
κ tells us much about <κ-closed forcings, since Add(κ,1) is forcing equivalent (i.e., the two
forcings have the same generic extensions) to

Add∗(κ,1) ∶= {(f, g) ∣ f ∈ Add(κ,1), g∶dom(f) → ∣dom(f)∣ is bijective},
ordered by reverse inclusion in the first coordinate. (The second coordinate is not used.)
Add∗(λ+,1) is <λ+-closed for any cardinal λ.

Exercise 3.6. Show that Add(κ,1) wellorders 2<κ. In particular, Add(ω1,1) wellorders the
reals.

By a <λ-distributive forcing P, we mean one such that for any sequence ⟨Ui ∣ i < α⟩ of dense
open subsets of P of length α < λ, ⋂i<αUi ≠ ∅. A λ-distributive forcing does not add element
of V λ. (The converse implication may fail by [KS23].)

Lemma 3.7 (folklore). For any infinite cardinal λ, DCλ holds if and only if every <λ+-closed
forcing is <λ+-distributive.

Proof. Using DCλ, we can find a sequence ⟨pi ∣ i < λ⟩ with pi ∈ Ui for all i < λ. Any lower
bound p of this sequence is in ⋂i<λUi. Conversely, if DCλ fails then there exists a <λ-closed
tree T with no λ-sequences, so T is <λ+-closed. Forcing with (T,≥) adds a new λ-sequence, so
T cannot be <λ-distributive. �
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We aim for a similar result for Cohen subsets.

Lemma 3.8. Suppose that λ ∈ Card and P = Add(λ+,1). The following conditions are equiv-
alent:

(a) DCλ(2λ).
(b) P is λ-distributive.
(c) P does not change V λ.

Proof. (a) ⇒ (b) ⇒ (c) are as in the previous lemma. (c) ⇒ (a): P wellorders (2λ)<λ. Thus
the given tree T has a λ-branch in the generic extension. Since P does not change V λ, this
branch is in V . �

Proposition 3.9 ([IS22, Section 3.5]). Suppose that λ ∈ Card and P = Add(λ+,1). The
following conditions are equivalent:

(a) DCλ(2λ).
(b) P preserves all cardinals α ≤ λ+ and the cofinality of all ordinals α ≤ λ+.
(c) P preserves λ+ as a cardinal.
(d) P forces that λ+ is regular.

Proof. (a) ⇒ (b) holds by the previous lemma and (b) ⇒ (c) is clear. (c) ⇒ (d) holds since P
wellorders 2λ. (d) ⇒ (a): Towards a contradiction, suppose that ν ≤ λ is least such that P adds
new elements to V ν . It suffices to show that P is ν-distributive. Suppose that ⟨Ui ∣ i < ν⟩ ∈ V
is a sequence of dense open subsets of P and G is a P-generic filter over V . Since P wellorders

2<λ
+

and does not change V <ν , we can construct a strictly decreasing sequence ⟨pi ∣ i < ν⟩ with
pi ∈ Ui ∩G in V [G]. Since λ+ is regular in V [G] and ν < λ+, we have µ ∶= supi<ν lh(pi) < λ+
and therefore p ∶= ⋃i<ν pi ∈ Add(λ+,1) is the unique condition in G of length µ. In particular,
p ∈ V . Hence p ∈ ⋂i<ν Ui as required. �

If DCν(2ν) fails for some ν ≤ λ, it thus follows that Add(λ+,1) collapses λ+. For example,
this holds for all λ ≥ ω2 in L(R), assuming there exists no ω1-sequence of distinct reals in L(R).

Exercise 3.10. Prove that (c) implies (d) in Lemma 3.8.

Problem 3.11. Which combinations of cardinals ≤λ can Add(λ+,1) preserve/collapse?

3.3. Adding Cohen subsets over L(R). Forcing over a model V of ZFC does not change
the theory of L(R) if there is a proper class of Woodin cardinals in V by a result of Woodin.
Then L(R) satisfies the axiom of determinacy AD and in L(R), AD implies DC by a result of

Kechris [Kec84]. A generic extension L(R)[G] of L(R) may be different from L(R)V [G] since

the set RV of ground model reals might not be in L(R)V [G].
We assume V = L(R) ⊧ AD and ask which Cohen subsets preserve cardinals and AD.
Cohen reals preserve all cardinals, since the usual argument for ccc forcings works for well-

ordered forcings. Add(λ+,1) collapses λ+ by Proposition 3.9.

Problem 3.12. (see Problem 3.11) Which cardinals ≤λ does Add(λ+,1) preserve or collapse
over L(R)?

Exercise 3.13. Suppose that V = L(R) and there exists no ω1-sequence of distinct reals.
Show that L(R)[G] ⊧ cof(κ) ≤ ∣R∣ for any Add(κ,1)-generic x ∈ 2κ over L(R) and κ ≥ ω1.

Ikegami and Trang observed that a Cohen real destroys AD. This follows from a result of
Kunen that RV does not have the Baire property adding a Cohen real.

Proposition 3.14 (Chan, Jackson, Goldberg 2021 [CJ21, Fact 3.3]). Suppose that V = L(R) ⊧
AD. Then any well-ordered forcing destroys AD.

Proof sketch. In V [G], take a perfect tree T with [T ] ⊆ (2ω)V .

● For each p ∈ P, let Ap be the set of x ∈ 2ω such that p ⊩ x ∈ [T ].
● SomeAp is uncountable, since a wellordered union of meager sets is meager by Kuratowski-

Ulam and the Baire property.
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● Take a perfect tree T ′ with [T ′] ⊆ Ap. Then p ⊩ [T ′] ⊆ [T ]. Since P adds new reals, it
adds a new element of [T ′].

�

Add(λ+,1) destroys AD, since it forces AC.
However, one can add new subsets of regular cardinals using Add(κ,1)HOD while preserving

AD.

Definition 3.15. Suppose that M is a transitive model and A ⊆ κ. A is a fresh subset of κ
over M if A ∉M , but A ∩ α ∈ for all α < κ.

Theorem 3.16 (Cunningham [Cun23, Theorem 2.4]). Suppose that V is a model of ZFC,
L(R) ⊧ ZF + AD and κ > ∣R∣ is a regular cardinal. If A is a fresh subset of κ over L(R), then
L(R)[A] does not have new sets of reals and hence it is a model of AD.

Proof. Suppose that B ∈ L(R)[A] is a set of reals. B is definable over some Lα(R)[A] from a
real and an ordinal and we assume that no parameters are needed.

We claim that B ∈ L(R). If α < κ, then Lα(R)[A] = Lα(R) since A ⊆ κ is fresh and thus
B ∈ L(R).

Suppose that α ≥ κ. Fix an operator H in V for Skolem hulls in Lα(R) and let

Hξ ∶=HLα(R)[A](R ∪ {ξ})

for any ξ ∈ Ord. Let M0 ∶=H0. Given Mn, let ξn ∶=Mn∩κ. Given Mn and ξn, let Mn+1 ∶=Hξn .
Then M ∶= ⋃n∈ωMn ≺ Lα(R) and ξ ∶=M ∩κ ∈ κ, since κ is regular. Let N denote the transitive
collapse of M . Since ∣M ∣ = ∣R∣ < κ, N = Lβ(R)[A∩ ξ] for some β < κ. Since B is definable over
N , we have B ∈ L(R)[A]. �

The extension L(R)[A] constructed in Theorem 3.16 is in fact a model of DC [Cun23,
Theorem 3.3].

The next result shows that one can add fresh subsets to some regular cardinals in L(R).

Theorem 3.17 (Cunningham [Cun23, Theorem 3.3]). Suppose that L(R) ⊧ ZF + AD and

κ > (ℵ∗(R)+)L(R) is regular. Let P ∈ HODL(R) be a forcing such that the P-generic filter is a
fresh subset of κ and

1P ⊩ “κ is a regular cardinal”

holds in HODL(R). Then AD holds in any P-generic extension of L(R).

Proof sketch. We will assume that κ is a sufficiently large regular cardinal in L(R).
Suppose that G×H is P×Col(ω1,R)-generic over L(R), where Col(λ,X) ∶= {p∶α →X ∣ α <

λ}. Note that G is P-generic over HODL(R) as well. Let A be the subset of κ given by G.
Then A is a fresh subset of κ over L(R).

We will assume that κ > ∣R∣L(R)[H] is regular. One can check that κ remains regular in
L(R)[H] [Cun23, Theorem 2.7].

It suffices to show that κ is regular in L(R)[G×H]. Since this is a model of choice, we can
apply Theorem 3.16 to A in this model and will thus obtain L(R)[G] ⊧ AD.

Let M ∶= HODL(R). Since Col(ω1,R) is homogeneous, we have M = HODL(R)[H]. Let Q
denote Vopenka’s forcing in M for subsets of ω1 [Jec03]. Then any subset of ω1 in L(R)[H]
is Q-generic over M . In particular, this holds for the subset of ω1 given by H. Since this set
codes all reals, we have that L(R)[H] =M[H] is a Q-generic extension of M and

M[G][H] =M[H][G] = L(R)[G ×H]
By the assumption of the theorem, κ remains regular in M[G]. We now assume κ > ∣Q∣M

so that κ remains regular in M[G][H] as required.

To see that the lower bound on κ suffices, one needs to check that ω
HOD[H]
2 = ℵ∗(R)L(R)

and ∣Q∣M ≤ ωHOD[H]
3 = (ℵ∗(R)+)L(R) [Cun23, Theorem 2.7]. �
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Remark 3.18. Ikegami and Trang proved a stronger version of Theorem 3.17 for all κ ≥
ℵ∗(R)L(R) [IT23, Theorem 5.1]. Chan and Jackson proved that ℵ∗(R) is least, since any
forcing over L(R) that is a surjective image of R destroys AD [CJ21, Theorem 5.6].
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4. Chain conditions

4.1. Variants of the ccc.

Definition 4.1 (Karagila, Schweber [KS22]).

● ccc1: Every maximal antichain in P is countable.
● ccc2: Every antichain in P is countable.
● ccc3: Every predense subset of P contains a countable predense subset.

Moreover, ccc∗i means ccci restricted to wellordered antichains, or predense subsets, of P.

These notions are equivalent for well-orderable forcings. Karagila and Schweber [KS22]
showed that the implications

ccc3 ⇒ ccc2 ⇒ ccc1

are provable in ZF, but none of these implications can be reversed in ZF +DC.

Exercise 4.2. There exists a ccc∗2 forcing which collapses ω1 if there is no ω1-sequence of
distinct reals.

The following theorem of Bukovsky gives us a new variant of the ccc that we call Bukovsky’s
condition.

Theorem 4.3 (Bukovsky). Suppose that V ⊆ W are models of ZFC. Then W is a generic
extension of V by a ccc forcing if and only if for every x ∈ V and f ∶x → V in W , there exists
a function g∶x→ V such that

(1) V ⊧ ∣g(u)∣ < ω1 for all u ∈ x, and
(2) W ⊧ f(u) ∈ g(u) for all u ∈ x.

Their theorem holds for the κ-cc for other regular κ as well.

Lemma 4.4 (Karagila, Schweber [KS22]). ccc3 implies Bukovsky’s condition.

Problem 4.5 (Karagila, Schweber [KS22]). Does Bukovsky’s condition imply ccc3?

Proposition 4.6 (Karagila, Schweber [KS22]). If P satisfies Bukovský’s condition, then P
preserves any cardinal κ > ω1. If ω1 is regular, then it is not collapsed.

Proof. Suppose that κ < λ are cardinals and f ∶κ → λ is a surjective function in V [G]. Pick
some F ∶κ → [λ]<ω1 such that f(α) ∈ F (α) for all α < κ. Since f is surjective, ⋃α<κ F (α) = λ.
But ⋃α<κ F (α) has size at most κ ⋅ ω1 = κ. If ω1 is regular, κ = ω and λ = ω1, then ⋃n<ω F (n)
is countable. �

Problem 4.7 (Karagila, Schweber [KS22]). Is it consistent that a ccc3 forcing collapses ω1?

4.2. σ-linked forcings.

Definition 4.8. A forcing P is κ-linked if there exists a (linking) function f ∶P → κ such that
for all p, q ∈ P,

f(p) = f(q) ⇒ p ∥ q.
ω-linked is also called σ-linked.

Any κ-linked forcing is split into κ many pieces, each one consisting of pairwise compatible
conditions.

Example 4.9. Hechler forcing is defined as H ∶= {(s, f) ∣ s ∈ ω<ω, f ∈ ωω, s ⊆ f}, where
(t, g) ≤ (s, f) if s ⊆ t and f(n) ≤ g(n) for all n ∈ ω. H is σ-linked.

Every σ-linked forcing satisfies ccc2.

Problem 4.10. Does every σ-linked forcing satisfy ccc3?

The definition of κ-linked could say

p�q⇒ f(p) ≠ f(q).
and we can equip Ord with the discrete partial order =. This suggests a generalisation of
κ-linked relative to a forcing Q:
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Definition 4.11. P is Q-linked if there exists a �-homomorphism f ∶P→ Q, i.e., such that for
all p, q ∈ P

p�q⇒ f(p)�f(q).

Note that in ZFC, if P is Q-linked and Q is ccc, then P is ccc.

Exercise 4.12. Well-ordered c.c.c. forcings preserve cardinals. (To see this, work in HOD
with the relevant parameters.)

C ∶= {p ∣ p∶n→ 2, n ∈ ω} denotes Cohen forcing and Cκ the finite support product of κ many
copies. They are well-ordered.

This goes further:

Lemma 4.13. Suppose that P is Q-linked and Q is well-ordered and c.c.c. Then P preserves
all cardinals.

Proof sketch. Suppose that 1P ⊩ ḟ ∶ω → ω̌1 is surjective. Let g∶P → Q be a �-homomorphism.
Define q ⊩∗ ϕ⇔ ∃p f(p) = q ∧ p ⊩ ϕ. If q ⊩∗ ϕ, q′ ⊩∗ ψ and ϕ, ψ are contradictory, then q�q′
as

p ⊩ ϕ ∧ p′ ⊩ ψ⇒ p�p′ ⇒ f(p)�f(p′).
Let An be a maximal antichain of q ∈ Q with q ⊩∗ “ḟ(n) = α“ This can be done in M ∶=
HOD{P,Q,ḟ}, since Q ⊆M . In M , ωV1 is regular, ⋃n∈ωAn is countable and ωV1 ≤∗ ⋃n∈ωAn. �

Exercise 4.14. Let Pα denote α with the discrete partial order. Then ∏α<ω1
Pα collapses ω1.

We therefore need a uniformity requirement on an iteration.
A product or iteration of σ-linked forcings is called uniform if it comes with a sequence of

names for linking functions.

Theorem 4.15. Any uniform finite support iteration of σ-linked forcings of length κ is Cκ-
linked.

Hence cardinals are preserved.

Problem 4.16. Do Cohen and Hechler models over V have different theories?

● A Cohen model is a Cκ-generic extension for some κ ≥ ω2.
● A Hechler model is obtained by a finite support iteration of H of some length κ ≥ ω2.

Proposition 4.17. Any uniform finite support iteration of σ-linked forcings of length κ is
Cκ-linked.

Proof sketch. Let ⟨Pα, Ṗα, ḟα ∣ α < κ⟩ denote such an iteration, where ḟα is a Pα-name for a

σ-linking function for Ṗα.
One can show that the set P̃ of all p ∈ Pκ such that for all α ∈ supp(p), p↾α decides ḟα(p(α)),

is dense [IS22, Lemma 4.16].

We can use the values of these functions to read off a �-homomorphism from P̃ to the set
Fun<ω(κ,ω) of finite partial functions p∶κ → ω. Fun<ω(κ,ω) can be densely embedded into
Cκ. �

4.3. Narrow forcings. The following is just the ccc∗2 for B(P).

Definition 4.18. P is called (ω,1)-narrow if all partial ∥-homomorphisms f ∶P ⇀ Ord have
countable range.

● A partial ∥-homomorphism f corresponds to a function on the set D all p ∈ P deciding
a statement, for instance p ⊩ ġ(n) = αp. f sends p ∈D to αp.

● A partial ∥-homomorphism f can be thought of a generalised antichain consisting of
“blocks“ f−1(α). Different blocks are incompatible.

● In a complete Boolean algebra, a partial ∥-homomorphism corresponds to an antichain,
since subsets A and B of P are elementwise incompatible if and only if sup(A) is
incompatible with sup(B).
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However, when trying to prove cardinal preservation via a function ḟ ∶ω → ω1, an ω-sequence
of such homomorphisms appears. This is captured by the next uniform version of ccc∗2 for many
homomorphisms.

We will see that all σ-linked forcings are narrow and later that random algebras are narrow.

Definition 4.19. Suppose that P is a forcing and θ, ν are ordinals, where θ is infinite.

1. P is called (θ, ν)-narrow if for any ordinal µ ≤ ν and any sequence f⃗ = ⟨fi ∣ i < µ⟩ of
partial ∥-homomorphisms fi∶P⇀ Ord,

∣ ⋃
i<µ

ran(fi)∣ ≤ ∣max(θ, µ)∣.

2. P is called θ-narrow if it is (θ, ν)-narrow for all ν ∈ Ord.

We further call P uniformly θ-narrow if there exists a function G that sends each partial ∥-
homomorphism f ∶P⇀ Ord. We can assume that ran(f) is an ordinal. to an injective function
G(f)∶ ran(f) → θ.

We further omit ω, so narrow means ω-narrow etc.
Note that (θ, θ)-narrow already implies (θ, ν)-narrow for all ν, since (θ,1)-narrow implies

(θ, µ)-narrow for all µ ≥ θ+ by cardinal arithmetic. Moreover, any uniformly θ-narrow forcing
is θ-narrow.

Any wellordered θ+-c.c. forcing P is θ-narrow. This can be seen by working in HODP,f⃗
for any f⃗ as above, since P ∩HODP,f⃗ is ν-c.c. in HODP,f⃗ for some ν < θ+ if θ+ is singular in
HODP,f⃗ .

Note that if θ+ is regular, then (θ,1)-narrow implies θ-narrow. Moreover, if there exists
a sequence of injective functions from all α < θ+ into θ, then (θ,1)-narrow implies uniformly
θ-narrow.

We do not know if every (θ,1)-narrow forcing is θ-narrow and whether every θ-narrow
forcing is uniformly θ-narrow. Moreover, we do not know if (θ,1)-narrow forcings preserve θ+

for all θ ∈ Card. It is true for ω1 by an argument with Schilhan and Karagila, but this does
not generalise. θ-narrow forcings preserve all cardinals >θ by the next lemma.

Lemma 4.20.

1. Every (θ,1)-narrow forcing P preserves all cardinals and cofinalities ≥θ++.
2. Every θ-narrow forcing P preserves all cardinals and cofinalities ≥θ+.

Proof. 1. We first show that P preserves any cardinal λ ≥ θ++. Suppose that µ < λ is a cardinal,
ḟ is a P-name, and p ⊩P ḟ ∶µ → λ for some p ∈ P. For each α < µ, let Dα denote the set of all
q ≤ p in P that decide ḟ(α). Define fα∶Dα → λ by sending each q to the unique β < λ with

q ⊩ ḟ(α) = β. Note that each fα is a partial ∥-homomorphism on P. Since P is (θ,1)-narrow,
otp(ran(fα)) < θ+ for each α < µ. Hence ∣ ⋃α<µ ran(fα)∣ ≤ ∣max(θ+, µ)∣ < λ. Hence p forces that

ḟ is not surjective.
A similar argument works for cofinalities. Suppose that λ is a cardinal with cof(λ) ≥ θ++.

Suppose that µ < cof(λ) is a cardinal, ḟ is a P-name, and p ⊩P ḟ ∶µ → λ for some p ∈ P. With

the same notation as above, ∣ ⋃α<µ ran(fα)∣ ≤ ∣max(θ+, µ)∣ < cof(λ), so p forces that ḟ is not
cofinal.

2. We first show that P preserves θ+. Suppose that µ < θ+ is a cardinal, ḟ is a P-name,
and p ⊩P ḟ ∶µ → θ+ for some p ∈ P. For each α < µ, let Dα denote the set of all q ≤ p
in P that decide ḟ(α). Define fα∶Dα → θ+ by sending each q to the unique β < θ+ with

q ⊩ ḟ(α) = β. Note that each fα is a partial ∥-homomorphism on P. Since P is θ-narrow, we

have ∣ ⋃α<µ ran(fα)∣ ≤ ∣max(θ, µ)∣ < θ+. Hence p forces that ḟ is not surjective.
A similar argument works for cofinality θ+. Suppose that λ is a cardinal with cof(λ) = θ+.

Suppose that µ < cof(λ) is a cardinal, ḟ is a P-name, and p ⊩P ḟ ∶µ → λ for some p ∈ P. With

the same notation as above, ∣ ⋃α<µ ran(fα)∣ ≤ ∣max(θ, µ)∣ < cof(λ), so p forces that ḟ is not
cofinal. �

Lemma 4.21. Suppose that θ, ν are cardinals, where θ is infinite, and f ∶P → Q is a ⊥-
homomorphism.
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1. Q is (θ, ν)-narrow, then P is (θ, ν)-narrow.
2. Q is uniformly θ-narrow, then P is uniformly θ-narrow.

Proof. 1. Suppose that f⃗ = ⟨fi ∣ i < µ⟩ is a sequence of partial ∥-homomorphisms fi∶P ⇀ Ord.
Let D ∶= ran(f) and define gi∶D → Ord as follows. Note that for all p, r ∈ P with f(p) = f(r), we
have fi(p) = fi(r), since f is a ⊥-homomorphism and fi is a ∥-homomorphism. For f(p) = q ∈D,
we can thus define gi(q) = fi(p). We claim that each gi is a partial ∥-homomorphism. Suppose
that q, s ∈ D with f(p) = q, f(r) = s and q ∥ s. Since f is a ⊥-homomorphism, p ∥ r. Since fi
is a ∥-homomorphism, gi(q) = fi(p) ∥ fi(r) = gi(s) as desired. Since ran(fi) = ran(gi) for all
i < µ and Q is (θ, ν)-narrow, the statement of the lemma follows.

2. Suppose G witnesses that Q is uniformly θ-narrow. The proof of 1. defines a function
H from G that witnesses P is uniformly θ-narrow by mapping a partial ∥-homomorphism
f ∶P⇀ Ord to a partial ∥-homomorphisms g on Q⇀ Ord with ran(f) = ran(g). �

4.4. Iterations. Suppose that θ is an infinite ordinal. A uniform finite support iteration of
uniformly θ-narrow forcings is a sequence P⃗ = ⟨Pα, Ṗβ , ġβ ∣ α ≤ δ, β < δ⟩ such that P⃗ = ⟨Pα, Ṗβ ∣
α ≤ δ, β < δ⟩ is a finite support iteration and for each α < δ, 1Pα forces that Ṗα is uniformly

θ-narrow as witnessed by Ġα.

Theorem 4.22. Suppose that θ is an infinite ordinal. Any uniform finite support iteration of
uniformly θ-narrow forcings is again uniformly θ-narrow.

Proof. We can assume θ ∈ Card. Let P⃗ = ⟨Pα, Ṗβ , ġβ ∣ α ≤ δ, β < δ⟩ denote the iteration. We

construct a sequence ⟨Gγ ∣ γ ≤ δ⟩ of functions by recursion on γ ≤ δ from P⃗ and θ, where Gγ
witnesses that Pγ is uniformly θ-narrow.

We can assume that each Gγ is a set function by taking ran(f) to be an ordinal for any
argument f of Gγ .

Case. γ is a successor.
Suppose that γ = β + 1 and Gβ has been constructed. Let f ∶Pβ ∗ Ṗβ ⇀ Ord be a partial

∥-homomorphism and

ḟ ∶= {((q̇, α̌)●, p) ∣ f(p, q̇) = α}.

Claim. 1Pβ forces that ḟ is a partial ∥-homomorphism on Ṗβ .

Proof. Let G be a Pβ-generic filter over V and work in V [G]. Suppose that q0, q1 ∈ ṖGβ and

ḟG(qi) = αi for i < 2. By the definition of ḟ , there exist q̇i with q̇Gi = qi and pi ∈ G with

((q̇i, α̌i), pi)● ∈ ḟ for i < 2.
Suppose that α0 ≠ α1. We claim that q0 ⊥ q1. Otherwise some p ∈ G forces q̇0∥q̇1 and we

may assume p ≤ p0, p1. Then (p0, q̇0) and (p1, q̇1) would be compatible and f(p0, q̇0) = α0 ≠
α1 = f(p1, q̇1), while f is a ∥-homomorphism. �

Therefore, 1 ⊩Pβ ġβ(ḟ)∶ ran(ḟ) → θ is injective. We can read off a Pβ-name ḣ for a function

extending ġβ(ḟ)−1. Then 1 ⊩Pβ ḣ∶ θ → ran(ḟ) is surjective.

For each α < θ, let Dα denote the set of all p ∈ Pβ that decide ḣ(α) and let hα∶Dα → Ord

by the ∥-homomorphism defined by letting hα(p) be the unique δ such that p ⊩ ḣ(α) = δ.
Since Gβ witnesses that Pβ is uniformly θ-narrow, the sequence ⟨Gβ(hα) ∣ α < θ⟩ consists of

injective functionsGβ(hα)∶ ran(hα) → θ. We thus obtain an injective function i∶ ⋃α<θ ran(hα) →
θ.

Since 1P ⊩ ran(ḟ) ⊆ ⋃α<θ ran(hα), we have ran(f) ⊆ ⋃α<θ ran(hα) by the definition of ḟ .
Thus i↾ran(f) → θ is injective. Let Gγ(f) ∶= i↾ran(f).

Case. γ is a limit.
Suppose that f ∶Pγ ⇀ Ord is a partial ∥-homomorphism. It suffices to show HODP⃗,f ⊧

ran(f) ≤ θ, since we then take the least injective function Gγ(f)∶ ran(f) → θ in HODP⃗,f in its
canonical wellorder.

To see this, let sα ∈ [γ]<ω for each α ∈ ran(f) be least with respect to a fixed definable
wellorder of [Ord]<ω such that there exists some p ∈ Pγ with support sα and f(p) = α. Let
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s⃗ = ⟨sα ∣ α ∈ ran(f)⟩. By restricting f , we can assume that for all α ∈ ran(f), all p ∈ Pγ with
f(p) = α have support sα.

Suppose that HODP⃗,f ⊧ ran(f) > θ towards a contradiction. We can assume HODP⃗,f ⊧
ran(f) = θ+ by restricting f . Work in HODP⃗,f . By the ∆-system lemma, we obtain a subfamily
of s⃗ that forms a ∆-system with a root r. We will assume that s⃗ is already a ∆-system. Fix
some γ′ < γ such that α+ 1 < γ0 for all α ∈ r and let D ∶= {p↾γ′ ∣ p ∈ dom(f)} be the projection
of dom(f) to Pγ′ . The function g∶D → Ord defined by g(p) ∶= α if

∃q ∈ dom(f) (q↾γ′ = p ∧ f(q) = α)
is well-defined by the next claim.

Claim. If u, v ∈ dom(f) with u↾γ′ = v↾γ′ = p ∈D, then f(u) = f(v).

Proof. Suppose that f(u) = α and f(v) = β. Then supp(u) = sα and supp(v) = sβ . Since
s⃗ is a ∆-system with root r, sα ∩ sβ ⊆ γ′ and u ∥ v. Since f is a partial ∥-homomorphism,
f(u) ≠ f(v). �

Claim. g∶Pβ ⇀ Ord is a ∥-homomorphism.

Proof. Suppose that p, q ∈ D with g(p) = α and g(q) = β. By the definition of g, there exist
u, v ∈ dom(f) with u↾γ′ = p, f(u) = α, v↾β = q and f(v) = β.

If α ≠ β, then u�v, since f is a partial ∥-homomorphism. Since dom(u)∩dom(v) = sα ∩sβ ⊆
γ′, p = t↾γ′ and q = u↾γ′ are incompatible. �

Claim. ran(f) = ran(g).

Proof. Suppose that α ∈ ran(f) and f(p) = α. Then p↾γ′ ∈D and g(p↾γ′) = α by the definition
of g. �

The inductive hypothesis for γ′ yields an injective function Gγ′(g)∶ ran(g) → θ. Since Gγ′ , g ∈
HODP⃗,f , we have HODP⃗,f ⊧ ran(f) = ran(g) ≤ θ, contradicting the assumption. �

4.5. A ccc2 forcing collapsing ω1. The following result uses a standard technique for sym-
metric models that appeared in work of Hodges [Hod74].

Let L be a first-order language and let M be an L-structure. Given a group G ⊆ Aut(M)
and an ideal I of subsets of M , we say that a subgroup of G is large if it contains fix(A) =
{π ∈ G ∣ π↾A = id} for some A ∈ I . Given L,M,G and I , we call a subset X of M stable if
there exists a large subgroup H of G such that π[X] =X for all π ∈ H .

Theorem 4.23 (Karagila, Schweber [KS22, Theorem 3.2]). In a model of choice, let L, M ,
G and I be as above. There is a symmetric extension of the universe in which there exists
an isomorphic (with isomorphism existing in some further extension) copy N of M such that
every subset of Nk in the symmetric extension is a stable isomorphic copy of a subset of Mk.
In addition, we can require:

● DC<κ holds in the extension, if I is <κ-complete.
● The extension has no new λ-sequences for any prescribed cardinal λ.

Theorem 4.24 (Karagila, Schweber [KS22, Theorem 6.4]). It is consistent with ZF+DC that
there exists a ccc2 forcing which collapses ω1.

Proof. We first construct a symmetric model over a model of ZFC. Let P denote Add(ω,ω1)
without 1. P is productively c.c.c.

Consider the lottery sum P∞ ∶= ⊕⟨n,α⟩∈ω×ω1
Pn,α, where each Pn,α is an isomorphic copy of

P. We assume the Pn,α are disjoint, so we can understand P∞ as their disjoint union. Let G
by the group acts on each Pn,α individually for countably many pairs ⟨n,α⟩ at the same time.
Let I be the ideal of countable subsets of P∞.

By Theorem 4.24, we get a symmetric extension M of V and, working in M , an isomorphic
copy of P∞, such that M is a model of DC and ω1 remains uncountable in M . We will again
denote the copy by P∞ and its summands by Pn,α. We now work in M . For any subset A of

Pk∞, there is a countable α < ω1 such that if α ≤ β and p(i) ∈ Pn,β for any p ∈ Ak, i < k and
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n ∈ ω, then any condition q obtained by replacing p(i) by an arbitrary condition in Pn,α is in
A.

Working in this symmetric extension consider the partial order Q given by pairs ⟨t, b⃗⟩ such
that:

1. t ∈ ω<ω1 and dom(t) = n.

2. b⃗ = ⟨b0, . . . , bn−1⟩ and bi ∈ Pi,t(i).
Let ⟨t, b⃗⟩ ≤ ⟨t′, b⃗′⟩ if the following conditions hold:

1. t′ ⊆ t.
2. For all i ∈ dom(t′), bi ≤n,α b′i.
This is a two-step iteration that first adds a surjection f ∶ω → ω1 using finite conditions and

then forces with the product ∏⟨n,α⟩ Pn,α. Thus, forcing with Q collapses ω1.
It remains to prove that every antichain in Q is countable. Let π denote the projection of

Q to ω<ω1 and πn,α the projection to Pn,α. Suppose that D is an uncountable subset of P∞.
It suffices to show that π−1(t)∩D is uncountable for some t ∈ ω<ω1 . Then π−1(t)∩D contains

two incompatible conditions, since it is a subset of {t} ×∏i∈dom(t) Pi,t(i) and P = Add(ω,ω1) is
productively ccc.

Case. π(D) is countable. Then by DC, there exists some t ∈ ω<ω1 such that π−1(t) ∩ D is
uncountable.

Case. π(D) is uncountable. We can assume that for some k ∈ ω, dom(t) = k for all t ∈ π(D)
by shrinking D. We can then identify D with a subset of Pk∞. Pick α < ω1 as above. Since
π(D) is uncountable, there exists some t ∈ π(D) with t(i) ≥ α for some i < k. Then π−1(t) ∩D
is uncountable. �
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