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We aim to develop a theory of forcing over arbitrary choiceless
models of set theory.

This talk is based on joint work with Daisuke Ikegami (Guangzhou).

▶ Daisuke Ikegami, Philipp Schlicht:
Forcing over choiceless models and generic absoluteness, 28 pages
submitted

1



Introduction



Mathematics without choice

Set theory without the axiom of choice allows us to do a lot of basic
mathematics.

• Many theorems in analysis, for example the intermediate value
theorem

• Algebra of countable groups and fields
• Theorems studied in second order arithmetic and reverse
mathematics

• Transfinite induction and recursion
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Mathematics without choice

However, many things can go wrong:

• Basic measure theory
• Much of functional analysis
• Existence of maximal ideals in rings
• Existence of nontrivial ultrafilters
• Existence of uncountable regular cardinals
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Mathematics without choice

Solovay’s model is obtained by forcing with

Col(ω,<κ) =
l
α<κ

Col(ω, α),

where Col(ω, α) = {p : n → α} and κ is an inaccessible cardinal.

• Solovay’s model is the L(R) of this generic extension.

Solovay (1970) showed that in this model, every set of reals is
Lebesgue measurable.
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Forcing with choice

The following models coincide:

• Solovay’s model over a universe with larger cardinals
• L(R) in a universe with larger cardinals.

These models are very well understood and satisfy stronger versions
of Solovay’s theorem concerning the determinacy of infinite games.
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Forcing with choice

A forcing is a set P with a separative partial order ≤. P can be
embedded into a complete Boolean algebra B := B(P).

A B-valued model of ZFC is constructed as

• VB0 = ∅
• VBα+1 = {f : VBα → B}
• VBλ =

∪
α<λ VBα for limits λ

with union VB. If G is a filter on B, V[G] := VB/G is a model of ZFC that
contains a copy of V via 0-1-valued functions. Suppose G is generic.
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Forcing with choice

The countable (anti)chain condition for P states that there are no
uncountable antichains in P.

It implies that ωV
1 is preserved in V[G]:

• Take a P-name ḟ for a function ḟ : ω → ωV
1 .

• Pick a maximal antichain of conditions deciding ḟ(n).
• Let αn be the (countable) supremum of these values and
α := supn<ω αn.

• Then ran(ḟ) is bounded below ωV
1 .
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Forcing without choice



Forcing without choice

Steel and Van Wesep (1982) introduced forcing over models of
determinacy.

Based on their work, Woodin developed Pmax-forcing over models of
determinacy.

Pmax-forcing and its variants form a powerful machinery to construct
models of choice by forcing over choiceless models.
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Forcing without choice

Blass proved the following in extensions by a Levy collapse of an
inaccessible: An ultrafilter on ω is Ramsey if and only if it is generic
for P(ω)/fin over L(R).

This was extended in work of Laflamme and Todorcevic.
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Forcing without choice

Some research on forcing over arbitrary choiceless models has been
done.

Monro (1983) studied preservation of fragments of the axiom of
choice.

Karagila, Schlicht (2020) studied under which circumstances
Add(A, 1) = {p | p : A ⇀ 2 finite} adds new reals.

Chan, Jackson (2021) and Ikegami, Trang (2023) studied the
preservation of the axiom of determinacy by forcing.
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Forcing without choice

What can go wrong?

• Countably closed forcings can collapse ω1 (folklore).
• Karagila, Schweber (2022): c.c.c. forcings can collapse ω1.
• Karagila, Schilhan (2022): A forcing may add no new
ω-sequences of ordinals, while it is not countably distributive.
A forcing is called countably distributive if the intersection of countably many open dense

sets is dense.

• Boolos (1974) or folklore: DC holds if and only if every structure
has a countable elementary substructure. Thus the definition of
proper forcing is not useful if DC fails.
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Forcing without choice

The aim is to develop a general theory of forcing over choiceless
models. We want to allow failures of even weak choice principles
such as DC and ACω .

• What do classical forcings do over arbitrary choiceless models?
• Can one force anything interesting over arbitrary choiceless
models?
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Choiceless models



Example I: Cohen’s first choiceless model

Add(ω, ω) := {p | p : ω × ω → 2 finite}.

Example
Add(ω, ω) adds a sequence a⃗ = ⟨an | n ∈ ω⟩ of Cohen reals.
Let A := {an | n ∈ ω} and V(A) the least model M ⊇ V of ZF with A ∈ M.

• DC fails in V(A), since A does not have a countably infinite
subset.
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Example II: Gitik’s model

Example
Gitik constructed a model of ZF where:

• All uncountable cardinals have countable cofinality.

The construction uses a proper class of strongly compact cardinals.

Remark
If ω1 is singular, then ACω and therefore DC fails:

Proof.
Suppose not. Let α⃗ = ⟨αn | n ∈ ω⟩ be cofinal in ω1.

• Pick f⃗ with fn : αn → ω injective by ACω .

This yields an injective function f : ω1 → ω.
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Properties of forcings



Countably closed forcings

Definition

1. Col(κ, λ) := {p : α → λ | α < κ}.

2. Col∗(κ, λ) := {(f, g) | f ∈ Col(κ, λ), g : dom(f) → |dom(f)| bijective}.

Col(κ, λ) is ordered by reverse inclusion, while Col∗(κ, λ) is ordered by
reverse inclusion in the first coordinate.

Remark
If ω1 is singular, then Col(ω1, 2) is not countably closed.
But Col∗(ω1, 2) is countably closed.
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Countably closed forcings

Theorem
TFAE for any set A of size at least 2, λ ∈ Card and P = Col(λ+,A):

1. DCλ(Aλ).
2. P is λ-distributive.
3. P does not change Vλ.
4. P preserves size and cofinality of all ordinals α ≤ λ+.
5. P preserves λ+ as a cardinal.
6. P forces that λ+ is regular.

The same equivalences hold for Col∗(λ+,A).
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Linked forcings

Let Cκ denote the finite support product of κ many Cohen forcings
C = {p | p : n ⇀ 2,n ∈ ω}.

Karagila observed that wellordered c.c.c. forcings such as Cκ

preserve cardinals.

We can reduce finite support products and (uniform) iterations of
σ-linked forcings fo Cκ to show they also preserve cardinals.

• A forcing P is called Q-linked if there is a ⊥-homomorphism
from P to Q.

• We equip each ordinal θ with the discrete partial order.
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Linked forcings

We call a product or iteration of σ-linked forcings uniform if it comes
with a sequence of names for linking functions.

Theorem
A uniform finite support product or iteration of σ-linked [Cκ-linked?]

forcings of length κ is Cκ-linked.

Any Cκ-linked forcing preserves cardinals.

This a special case of the following notion.
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Narrow forcings

Definition
Suppose that P is a forcing and θ, ν are ordinals, where θ is infinite.

1. P is called (θ, ν)-narrow if for any ordinal µ ≤ ν and any sequence
f⃗ = ⟨fi | i < µ⟩ of partial ∥-homomorphisms fi : P → Ord,

|
∪
i<µ

ran(fi)| ≤ |max(θ, µ)|.

2. P is called θ-narrow if it is (θ, ν)-narrow for all ν ∈ Ord. It is called
narrow if it is ω-narrow.

We further call P uniformly (θ, ν)-narrow if there exists a function Gν that
sends each sequence f⃗ = ⟨fi | i < µ⟩ of partial ∥-homomorphisms
fi : P → Ord,1 where µ ≤ ν , to an injective function

Gν (⃗f) :
∪
i<µ

ran(fi) → max(|θ|, µ).

It is called uniformly narrow if it is uniformly ω-narrow.
1We can assume ran(fi) is an ordinal.
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Narrow forcings

Lemma

Every (θ, ν)-narrow forcing P preserves all cardinals and cofinalities
in the interval (θ, ν+].

Lemma

Suppose that θ, ν are cardinals, where θ is infinite, and f : P → Q is a
⊥-homomorphism.

1. Q is (θ, ν)-narrow, then P is (θ, ν)-narrow.

2. Q is uniformly (θ, ν)-narrow, then P is uniformly (θ, ν)-narrow.
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Narrow forcings

Theorem
Suppose that θ ≤ ν are infinite ordinals. Any uniform iteration of
(θ, ν)-narrow forcings with finite support is again uniformly
(θ, ν)-narrow.

This allows us to iterate a mix of Cohen forcing, Hechler forcing and
random algebras while preserving all cardinals and cofinalities.
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Specific forcings



Iterations of Hechler forcing

Theorem
Suppose that κ is a cardinal of uncountable cofinality. Then H(κ)

forces b = d = cof(κ).

Theorem
Suppose ν ≥ ω1 is multiplicatively closed and has countable
cofinality. Any uniform iteration Pν of nontrivial forcings with finite
support of length ν forces:

1. b = ω1 if Pν preserves ω1.

2. d ≥ |ν| if Pν preserves |ν| and d exists in the extension.

In particular, this holds for H(ν).
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Random algebras

An α-Borel code for a subset of 2α is a subset of α that codes a set formed
from basic open subsets of 2α via complements and countable unions. Let
2(α) = {f | f : α ⇀ 2 finite.}.

Rα denotes the forcing that consists of all Borel codes for subsets of 2α

ordered by ≤. The quotient of Rα by =µ with the operations induced by ∨, ∧
and − is a Boolean algebra.

A forcing is called complete if every subset has a supremum. To show Rα is
complete, we associate to every A ∈ Rα its footprint fA = ⟨fA,t | t ∈ 2(α)⟩,
where fA,t denotes the relative measure:

fA,t :=
µ([p] ∩ Nt)

µ(Nt)
.

Let fA ≤ fB if fA,t ≤ fB,t for all t ∈ 2(α). Note that A ≤ B if and only if fA ≤ fB.
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Random algebras

Definition
Suppose that f⃗ = ⟨fs | s ∈ 2(α)⟩ is a sequence in R and x ∈ 2α.

1. For any ϵ > 0, x is called an ϵ-density point of f if

∃s ∀t ⊇ s ft > 1− ϵ.

2. x is called a density point of f if it is an ϵ-density point of f for all
ϵ ∈ Q+.

The α-Borel code induced by 2 is denoted D(f).
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Random algebras

To construct a least upper bound, we first form the least upper bound of the
footprints: let fX,t := supA∈X fA,t for each t ∈ 2(α) and

fX := ⟨fX,t | t ∈ 2(α)⟩.

Lemma

1. In any outer model W of V such that α is countable in W, D(fX) is a least
upper bound for X.

2. Rα is complete. More precisely, for any subset X of Rα the reduct of
D(fX) is a least upper bound for X.

The reduct is defined by induction on the rank by reducing each union by a
countable one.

Using completeness, we can show random algebras are uniformly narrow.
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Future directions



Changing the theory

Theorem (Woodin 2013)
The Cohen and random models over any choiceless model have
different first order theories.

This is the only such example of two models up to now. We have not
separated the Hechler from the Cohen and random models.

Theorem
Adding many Cohen reals over Gitik’s model changes its first order
theory.
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Grounds

The ground axiom (introduced by Reitz 2014) states that the universe
has no nontrivial ground for set forcing. We aim to analyse the
grounds of choiceless models.

The following is motivated by questions of Usuba and Larson.

Question
Suppose there is a proper class of measurable cardinals. Does the
Chang model L(Ordω) have a nontrivial ground?

We aim to first understand Solovay’s model.

Question
What are precisely the grounds of Solovay’s model?
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Thank you!


