Implicitly definable sets and large cardinals

Philipp Schlicht, University of Bristol Set Theory in the UK 10, Oxford, 14 June 2023 Topic:

- Hamkins and Leahy (2014) introduced implicitly definable sets of ordinals over *L*.
- Carl, Welch and Schlicht (2018) introduced recognisable sets of ordinals.
- Aim: study the interplay with large cardinals.

Based on joint work with Carl and Welch:

 Merlin Carl, Philipp Schlicht and Philip Welch: Recognisable sets and measurable cardinals, 13 pages, in preparation An **implicit** definition of a function *f* is a decision procedure to answer the question:

• Is (x, y) is in the graph of f?

Calculating f(x) may be harder than checking whether f(x) = y.

Example

 $x^{2} + y^{2} = 1$ versus $f(x) = (1 - x^{2})^{\frac{1}{2}}$

Our notion of algorithm is relative constructibility for sets of ordinals with ordinal parameters.

The pointwise version of the above problem asks:

- Is it harder to construct a set y of ordinals in L(x) than checking a condition in L(x, y)?
- Is it harder to construct a set y of ordinals in L than checking a condition in L(y)?

Definition (Hamkins, Leahy 2014) Suppose that <u>M</u> is a class.

• A subset X of M is called implicitly definable over M if for some first-order formula $\varphi(.)$ with parameters in M, X is unique with

 $(M, \in, X) \models \varphi(X).$

- Let $P_{imp}(M)$ denote the class of subsets of M which are implicitly definable over M.
- Let $\operatorname{Imp}_{0} = \emptyset$, $\operatorname{Imp}_{\alpha+1} = P_{\operatorname{imp}}(\operatorname{Imp}_{\alpha})$ and $\operatorname{Imp}_{\lambda} = \bigcup_{\alpha < \lambda} \operatorname{Imp}_{\alpha}$ for limits λ .
- Imp = $\bigcup_{\alpha \in Ord} Imp_{\alpha}$ is called the implicitly definable universe.

Proposition (Hamkins, Leahy 2014)

Imp is a model of ZF with $L \subseteq$ Imp \subseteq HOD.

They asked:

- Which large cardinals are absolute to Imp?
- Can Imp have measurable cardinals?
- Can we put arbitrary sets into the Imp of a suitable forcing extension?

Definition (Carl, Schlicht, Welch 2018)

A set x of ordinals is called recognisable if there is a first-order formula $\varphi(y, \alpha)$ with an ordinal parameter α such that x is the unique set y of ordinals with

 $L[y] \models \varphi(y, \alpha).$

Recognisable sets need not be in *L*.

Example

 $0^{\#}$, and any Π_2^1 -singleton *x*, is recognisable with parameter ω_1 , since Π_2^1 -truth is absolute between L[x] and *V*.

These examples are analogous to the lost melody phenomenon in infinite time computation: a real may be decidable, but not writable.

The class of recognisable sets is not necessarily constructibly closed.

Example

A Cohen real *x* over *L* cannot be recognisable. Otherwise, all Cohen reals over *L* extending a specific finite sequence would satisfy the formula recognising *x*.

But 0[#] is recognisable and constructs Cohen reals over *L*.

The recognisable universe ${\bf R}$ denotes the constructible closure:

 $\mathbf{R} = \bigcup_{x \text{ is recogn.}} L[x].$

R equals the class of sets coded by recognisable sets, via the Mostowski collapse.

Proposition (Carl, Schlicht, Welch 2018)

The constructible closures of the following classes are equal:

- (1) Recognisable sets
- (2) Implicitly definable sets over L

To show (1) \Rightarrow (2), one finds a set A of ordinals coding the $L_{\alpha}[x]$ -hierarchy that is implicitly definable over L.

Every set implicitly definable over *L* is also recognisable, but 0[#] is recognisable and it's open whether it is implicitly definable over *L*.

Corollary

R is a subclass of Imp.

Theorem (Groszek, Hamkins 2017)

Each of the following statements is consistent:

- · Imp $\models \neg CH$
- Imp \neq HOD
- $\boldsymbol{\cdot}~\mathrm{Imp}^{\mathrm{Imp}} \neq \mathrm{Imp}$

Replace first-order logic by a stronger logic to obtain variants of *L*:

- HOD arises from second-order logic (Myhill, Scott 1971)
- Chang's model $L(\text{Ord}^{\omega})$ arises from $\mathcal{L}_{\omega_1,\omega_1}$ (Chang 1971)
- L[Card]
- $L[\operatorname{Cof} \omega]$

While HOD is too variable to achieve a complete analysis, the remaining models have been analysed, assuming large cardinals. (Woodin 2004, Welch 2019, Magidor, Kennedy, Väänänen 2020)

In particular, their first-order theories are absolute, assuming a proper class of Woodin cardinals.

Recall that BPFA denotes the forcing axiom for ω_1 -many predense sets, each of size at most ω_1 .

Caicedo and Velickovic isolated a consequence T of BPFA in H_{ω_2} that fixes the power set of ω_1 .

Theorem (Caicedo, Velickovic 2006)

Suppose that M is an inner model with $\omega_2^M = \omega_2$ and T holds in both $H_{\omega_2}^M$ and H_{ω_2} . Then $H_{\omega_2}^M = H_{\omega_2}$.

Larson (2008) obtained a wellorder of H_{ω_2} that is definable without parameters over H_{ω_2} from strong forcing axioms.

Let A be the subset of ω_2 that lists $P(\omega_1)$ with respect to this wellorder. Then A is recognisable.

It follows that assuming large cardinals, every set can be put into the Imp of a generic extension.

L[U] denotes a model with a normal ultrafilter U on κ over L[U].

Kunen proved that L[U] is unique: if L[U'] is such that U' is a normal ultrafilter on κ over L[U'], then U = U'.

Proof sketch:

- Take iterated ultrapowers of L[U] and L[U'] up to a regular λ .
- Both images of U and U' will equal the club filter on λ .
- Forming Skolem hulls shows U = U'.

This implies: $L_{\lambda}[U]$, coded by its canonical wellorder, is recognisable from κ and λ .

Similar arguments work for $L[U_0, ..., U_n]$. Hence $\mathbf{R} = V$ in these models.

By a fine-structural model, we mean a transitive model $M = J_{\alpha}[E]$ with a coherent extender sequence E in the sense of Zeman 2002, Chapter 4, that does not contain measures of order 1.

Lemma (Carl, Schlicht, Welch 2023)

Suppose that M and N are iterable small fine-structural models with the same measurable cardinals $\kappa_0 < \cdots < \kappa_n$ of the same height, $\operatorname{cof}^{V}(\kappa_i) > \omega$ and $\kappa_i^{+M} = \kappa_i^{+N} = \kappa_i^{+}$ for all $i \leq n$.

• If $1(E^M) = 1(E^N) = \lambda^+$ for some λ such that λ^+ is a successor cardinal in both M and N, then M = N.

If M is a fine-structural model of height $\lambda \in Card$, let X_M denote the unique subset of λ that codes M via its canonical wellorder.

Proposition (Carl, Schlicht, Welch 2023)

Suppose that V is an iterable small fine-structural model with the measurable cardinals $\kappa_0 < \cdots < \kappa_n$ and $l(E^V) = \lambda$. Then $X_{V \parallel \lambda}$ is recognisable from κ_i , κ_i^+ for $i \leq n$ and

1. λ , if λ is a successor cardinal.

2. λ and some ordinal α with $\lambda \leq \alpha < \lambda^+$.

In particular, $\mathbf{R} = \mathbf{V}$.

 M^{meas} denotes the least fine-structural model with infinitely many measurable cardinals with supremum κ . Write $L[X] := \bigcup_{x \in X} L(x)$.

The above results show one inclusion of the next theorem.

```
Theorem (Carl, Schlicht, Welch 2023)
In M^{\text{meas}}, \mathbf{R} = L[H_{\kappa}].
```

The reverse inclusion is shown via the analysis of HOD in iterated ultrapowers of Dehornoy 1978.

What's next?

Problem

Can we compute **R** inner models with larger cardinals?

• We aim to do this below a Woodin cardinal.

 M_1 is a canonical inner model with a Woodin cardinal. We obtain M^{∞} by taking all iterated ultrapowers of M_1 with the measure on its least measurable cardinal.

Theorem (Carl, Schlicht, Welch 2018)

All recognisable subsets of countable ordinals are elements of M^{∞} .

- This fails for subsets of ω_2 by results of Caicedo and Velickovic.
- However, one can show that a generic version ${\bf R}^{\rm gen}$ of ${\bf R}$ equals $M^\infty.$

Problem

Do the levels of Imp roughly correspond to Woodin cardinals?