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I. Introduction



Two themes

Problem
Which iterated forcings preserve projective determinacy?

This talk is based on joint work with Jonathan Schilhan (Leeds) and
Johannes Schürz (Vienna).

▶ Jonathan Schilhan, Philipp Schlicht, Johannes Schürz:
Iterated forcing, determinacy and regularity, 32 pages, in preparation
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Two themes

Iterated forcing is the main tool used to prove independence results
for arbitrary sets of reals.

Example
The Borel conjecture states that every strong measure 0 set is
countable.

Recall that for any sequence of positive reals ϵn, a strong measure 0
set is covered by a sequence of balls of radii ϵn.

• CH implies that the Borel conjecture fails
• Laver (1976) showed that the Borel conjecture holds a ter
iterating Laver forcing
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Two themes

Projective determinacy is an important axiom used to study
definable sets of reals beyond Borel sets. Some consequences:

• Measurability
• Lebesgue measurability of all projective sets

• Nonexistence
• No projective wellordering of the reals
• No projective selector for equality up to finite error (E0)

• Structure
• Projective uniformisation of all projective relations
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II. Forcings on the reals
and analytic determinacy



Test question

Question
Does Cohen forcing preserve analytic determinacy?

We do not know of a direct proof using the definition of analytic
determinacy.
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What was known

It is easy to destroy determinacy if ω1 can be collapsed. We will thus
assume P is proper.

In fact, we will always assume stronger forms of properness. It is
open whether properness suffices.

It is further natural to assume P is a projective forcing on the reals.

The complexity of the forcing should be approximately the same as
the level of projective determinacy:

Theorem (David 1978)
It is consistent that there exists a Σ1

3-definable c.c.c. forcing that
destroys analytic determinacy.

7



What was known

Σ1
3-absoluteness is closely related to this, since it o ten follows from

proofs of the preservation of analytic determinacy.

Theorem (Woodin 1982)
Analytic determinacy (actually uniformisation up to meager resp.
null) implies Σ1

3-absoluteness for Cohen and random forcing.

Problem
Does every Borel proper forcing preserve analytic determinacy?

This is a slight variant of a question of Ikegami (2010) who asked this
for absolutely ∆1

2 proper tree forcings.

8



What was known

Theorem (S. 2014)
Any Σ1

2 absolutely c.c.c. forcing preserves Π1
n-determinacy for each

n ≥ 1.

Theorem (Castiblanco, S. 2020)
Sacks, Mathias, Laver and Silver forcing preserve Π1

n-determinacy for
each n ≥ 1.
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Background

Theorem (Levy, Solovay 1967)
If κ is measurable and P is a forcing of size |P| < κ, then κ remains
measurable in any P-generic extension V[G] of V.

Proof sketch.
Li t j : V → N to j∗ : V[G] → N[G] by letting j∗(σG) = j(σ)G.

Theorem (Foreman 2013)
Generic supercompactness of ω1 is preserved by all proper forcings.
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Analytic determinacy and sharps

Theorem (Martin 1970, Harrington 1978)
The following conditions are equivalent:

1. x# exists for all reals x
2. Analytic determinacy

Analytic determinacy is preserved by Cohen forcing by li ting
j : L[σ] → L[σ] to L[σ][G].
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A strong variant of proper

Definition (Goldstern 1992)
A Suslin forcing is a forcing (P,≤) on the reals such that ≤ is analytic.

Definition (following Judah, Shelah 1988)
Let P be a forcing on the reals.

1. A countable transitive model N of a large fragment of ZFC is called a
candidate for P if P ∩ N ∈ N.

2. P is called proper-for-candidates if for every candidate N for P and
every p ∈ P ∩ N there exists an (N,P)-generic condition q ≤ p.

We similarly defineM-proper ifM is a family of transitive models of ZFC−.
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Capturing

We isolated a weak form a properness that suffices for the preservation of sharps:

Definition (Castiblanco, S. 2020)
Suppose that P and Q are forcings and Q is amenable to each L(x). We say that P is
L-captured by Q if the following holds for any P-name τ for a real

“ If H is P-generic over V, then τ
H is contained in a Q ∩ L(y)-generic extension of some L(y). ”

Equivalently: For any p ∈ P and any real x, there exists a real y with x ∈ L(y) such that some
q ≤P p forces:

“There exists a Q ∩ L(y)-generic filter g over L(y) with τ ∈ L(y)[g].”

M-captured is defined similarly for any operatorM(x) instead of L(x), i.e. a functionM
that sends each real x to a structureM(x) = (M(x),∈, E) such that

• x ∈ M(x), M(x) is transitive, M(x) |= ZFC− and M(x) is E-amenable.
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Capturing

Any proper-for-candidates Suslin forcing is L-captured (by some
forcing). This includes most classical proper forcings which add a
real.

Any L-captured forcing on the reals implies preservation of analytic
determinacy.
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Capturing

Lemma (Schilhan, Schürz, S.)
Suppose that ω1 is inaccessible to the reals, P̄ = (P, ≤⃗) is an Axiom A
forcing on the reals and the following hold for any real x:

1. P ∩ L[x] ∈ L[x] satisfies Axiom A in L[x].
2. For any subset A ∈ L[x] of P that is countable in L[x] and for any

p ∈ P, the statements

“A is an antichain”

“A is predense below p”

are absolute between L[x] and V.

Then P is L-captured by P.

A similar result holds for arbitrary operators.
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III. Forcings on the reals
and projective determinacy



Iterable structures

Work with transitive structures (M,∈, E), where

• (M,∈) |= ZFC−

• E is an M-amenable sequence of extenders, i.e., directed systems of ultrafilters.

• All extenders in E, except possibly the last one, are elements of M

An iteration (tree) on (M,∈, E) is formed along a tree order T such that an extender
can be applied to a different model than the last one.

Definition
(M,∈, E) is called ω1-iterable if there exists a strategy choosing branches such that all
ultrapowers in countable iteration trees on M using E and its images are wellfounded.

Definition
We call (M,∈, E) n-tall if M has n Woodin cardinals and a measure above them,
witnessed by E.

An operatorM is called n-tall if eachM(x) is n-tall.
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Iterable structures

Definition
Suppose that M is a model, N an operator and t a term.

1. An iteration S on M of limit length is called (N, t)-good if the following
statements hold for σt(S, y) := tN(y)S , where y is any real with S ∈ N(y):

(a) σt(S, y) exists.
(b) σt(S, y) is independent of the choice of y.
(c) σt(S, y) is a wellfounded branch in S.
Let σt(S) := σt(S, y) in this case.

2. M is called N-iterable if there is a term t such that σt is a (nice) iteration strategy
for M. In particular, for all iterations T on M of limit length, the direct limit along
σt(T) is wellfounded if all proper initial segments S of T of limit length are
(N, t)-good and pick σt(S) at that stage.

3. An operatorM is called N-iterable if there is a term t that witnesses eachM(x)
to be N-iterable.

An operatorM is called stably N-iterable if the above holds for all small generic
extensions N(y)[g] of N(y).
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Projective determinacy

The following can be extracted from work of Neeman, Woodin and
others:

Corollary
The following statements are equivalent for any n:

1. Π1
n+1-determinacy.

2. There exists an n-tall stably M-iterable operator M.

For example, theM#
n -operator from inner model theory is stably

M#
k -iterable for any k ≥ n− 1.
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Preservation of projective determinacy

The notion of stable iterability is defined so that one can extend the
operator to generic extensions.

Proposition (Schilhan, Schürz, S.)
Suppose thatM is any stablyM-iterable P-amenable operator and P is
M-captured.

1. In any P-generic extension,M can be extended to anM∗-iterable
operatorM∗.

2. IfM is n-tall, thenM∗ is n-tall.

It follows for example that any proper-for-candidates Suslin forcing
preserves projective determinacy level-by-level.

Corollary (Schilhan, Schürz, S.)
Any Σ1

3 proper-for-candidates forcing preserves Σ1
2-determinacy.

• This contrasts David’s result that Σ1
3 c.c.c. forcings can destroy analytic

determinacy. 20



IV. Iterating forcings on the reals



Background

Suppose that P = ⟨Pα, Ṗα : α < κ⟩ is a countable support iteration of
proper-for-candidates Suslin forcings (in fact, they assumed ⊥ is analytic as
well) 0 of countable length α. Suppose M is a countable transitive model.

• Judah, Shelah and Goldstern defined a procedure to translate a
P-generic filter G over V to a filter GM on PM.

Theorem (Judah, Shelah 1988, Goldstern, Shelah 1992)
Over Solovay models, countable support iterations of Suslin proper-for-
candidates forcings preserve that all projective sets have the Baire property.

• Main application: force the Borel conjecture over Solovay’s model while
preserving the Baire property for projective sets.
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Iterated forcing

Theorem (Schilhan, Schürz, S.)
Suppose that ω1 is inaccessible in L(x) for every real x. Suppose that
P = ⟨Pα, Ṗα : α < κ⟩ is a countable support iteration of proper-for-candidates Suslin
forcings such that for every α < κ,

⊩Pα Ṗα is proper-for-candidates in any small generic extension of any L(x).

Then P is L-captured by a countable support iteration Q of proper-for-candidates
Suslin forcings of countable length.

In particular, forcing with P preserves analytic determinacy.

The forcing Q is constructed in a concrete way.

Example
If P is an iteration of Sacks forcing, then Q is an iteration of Sacks forcing as well.
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Iterated forcing

Theorem (Schilhan, Schürz, S.)
Suppose that n is even and M is an n-tall stably iterable operator. Suppose that
P = ⟨Pα, Ṗα : α < κ⟩ is a countable support iteration of M-proper Σ1

n+2-forcings such
that for every α < κ,

⊩Pα Ṗα is proper for Σ1
n+2-correct models in any small generic extension of

any M(x).
Then P is L-captured by a countable support iteration of countable length of forcings
Q that are proper for Σ1

n+2-correct models.

In particular, forcing with P preserves Π1
n+1-determinacy.

Corollary (Schilhan, Schürz, S.)
The combination of the Borel conjecture and Π1

n-determinacy is consistent, if the latter
is consistent.
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V. More results



Generic absoluteness, adding equivalence classes

Theorem (Schilhan, Schürz, S.)
Suppose that ω1 is inaccessible to the reals and P is L-captured if n = 0 and P is
M-captured if n > 0, where M is an n-tall stably iterable operator. Then

V ≺Σ1n+3
VP.

Building on arguments of Hjorth and Magidor about not adding new classes to thin
equivalence relations, we get for example:

Proposition (Schilhan, Schürz, S.)
Suppose analytic determinacy holds and P is a proper forcing on the reals such that P
and P× P are captured. Then P does not increase u2 .

Theorem (Schilhan, Schürz, S.)
Suppose analytic determinacy holds and G is an absolutely ∆1

3 thin graph on the reals.
A ter forcing with a countable support iteration of Sacks forcing, any new real has an
edge to some ground model real.
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Regularity properties

It follows from results of Pawlikowski (1986), Judah and Shelah (1989) that

1. Cohen forcing preserves “all ∆1
2 sets have the Baire property.”

2. Random forcing preserves “all ∆1
2 sets are Lebesgue measurable.”

Theorem (Schilhan, Schürz, S.)
Any forcing that satisfies a uniform version of capturing for Cohen forcing
preserves that all ∆1

2 sets have the Baire property.

• For example, countable support products and iterations of Sacks
forcing satisfy this.
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VI. Open questions



Open questions

Question
Do the above forcings preserve determinacy in L(R)?

Question
Does proper imply proper-for-candidates and Axiom A for Borel
forcings, assuming projective determinacy?

This is related to Ikegami’s question whether absolutely ∆1
2 proper

tree forcings preserve analytic determinacy by

Question
Can Mathias forcing with an ultrafilter destroy analytic determinacy?
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Thank you!


