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What can be done by forcing over arbitrary choiceless models?

This talk is based on joint work with Daisuke Ikegami (Tokyo).
Some results are joint with W. Hugh Woodin (Harvard).

▶ Daisuke Ikegami, Philipp Schlicht:
Forcing over choiceless models and generic absoluteness, 28 pages
to be submitted
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Introduction



Mathematics without choice

Set theory without the axiom of choice allows us to do a lot of basic
mathematics.

• Many theorems in analysis, for example the intermediate value
theorem

• Algebra of countable groups and fields
• Theorems studied in second order arithmetic and reverse
mathematics

• Transfinite induction and recursion
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Mathematics without choice

However, many things can go wrong:

• Basic measure theory
• Much of functional analysis
• Existence of maximal ideals in rings
• Existence of nontrivial ultrafilters
• Existence of uncountable regular cardinals
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Forcing without choice

Choiceless models have been used to separate the axiom of choice
from some its consequences such as:

• the ultrafilter lemma (Halpern-Läuchli)
• the existence of a basis for the Q-vector space R.

Steel and Van Wesep introduced forcing over models of determinacy.

Based on this, Woodin developed Pmax-forcing over models of
determinacy. L(R) and its Pmax-extension have canonical theories.

5



Forcing without choice

Blass proved the following in extensions by a Levy collapse of an
inaccessible: An ultrafilter on ω is Ramsey if and only if it is generic
for P(ω)/fin over L(R).

This was extended in work of Laflamme and Todorcevic.

6



Forcing without choice

There has been some research on forcing over arbitrary choiceless
models.

Monro studied preservation of fragments of the axiom of choice.

Karagila, Schlicht 2020 studied when Add(A, 1) = {p | p : A ⇀ 2 finite}
adds new reals.
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Forcing without choice

What can go wrong?

• Countably closed forcings can collapse ω1 (folklore).
• Karagila, Schweber 2022: c.c.c. forcings can collapse ω1.
• Karagila, Schilhan 2022: A forcing may add no new ω-sequences
of ordinals, while it is not countably distributive.
A forcing is called countably distributive if the intersection of countably many open dense

sets is dense.

• Boolos 1974 (or folklore): DC holds if and only if every structure
has a countable elementary substructure. Thus the definition of
proper forcing is not useful if DC fails.
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Forcing without choice

The goal is to develop a general theory of forcing over choiceless
models. We want to allow failures of even weak choice principles
such as DC and ACω .

For each forcing or class of forcings, we want to understand what it
can do.

• Can one force anything interesting at all over arbitrary
choiceless models?
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Example I: Cohen’s first choiceless model

Add(ω, ω) = {p | p : ω × ω → 2 finite} adds a Cohen subset of A.

Example
Add(ω, ω) adds a sequence a⃗ = ⟨an | n ∈ ω⟩ of Cohen reals.
Let A = {an | n ∈ ω} and V(A) the least model M ⊇ V of ZF with A ∈ M.

• DC fails in V(A), since A does not have a countably infinite
subset.
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Example II: Gitik’s model

Example
Gitik constructed a model of ZF where:

• All uncountable cardinals have countable cofinality.

The construction uses a proper class of strongly compact cardinals.

Remark
If ω1 is singular, then ACω and therefore DC fails:

Proof.
Suppose not. Let α⃗ = ⟨αn | n ∈ ω⟩ be cofinal in ω1.

• Pick f⃗ with fn : αn → ω injective by ACω .

This yields an injective function f : ω1 → ω.
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A toolbox



Countably closed forcings

Definition

1. Col(κ, λ) := {p : α → λ | α < κ}.

2. Col∗(κ, λ) := {(f, g) | f ∈ Col(κ, λ), g : dom(f) → |dom(f)| bijective}.

Col(κ, λ) is ordered by reverse inclusion, while Col∗(κ, λ) is ordered by
reverse inclusion in the first coordinate.

Remark
If ω1 is singular, then Col(ω1, 2) is not countably closed.
But Col∗(ω1, 2) is countably closed.
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Countably closed forcings

Theorem
TFAE for any set A of size at least 2, λ ∈ Card and P = Col(λ+,A):

1. DCλ(Aλ).
2. P is λ-distributive.
3. P does not change Vλ.
4. P preserves size and cofinality of all ordinals α ≤ λ+.
5. P preserves λ+ as a cardinal.
6. P forces that λ+ is regular.

The same equivalences hold for Col∗(λ+,A).
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Linked forcings

Let Cκ denote the finite support product of κ many Cohen forcings
C = {p | p : n ⇀ 2,n ∈ ω}.

Karagila observed that wellordered c.c.c. forcings such as Cκ

preserve cardinals.

We can reduce finite support products and (uniform) iterations of
σ-linked forcings fo Cκ to show they also preserve cardinals.

• A forcing P is called Q-linked if there is a ⊥-homomorphism
from P to Q.

• We equip each ordinal θ with the discrete partial order.
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Linked forcings

We call a product or iteration of σ-linked forcings uniform if it comes
with a sequence of names for linking functions.

Theorem
A uniform finite support product or iteration of σ-linked forcings of
length κ is Cκ-linked.

Any Cκ-linked forcing preserves cardinals.

This a special case of the following notion.
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Narrow forcings

Definition
Suppose that P is a forcing and θ, ν are ordinals, where θ is infinite.

1. P is called (θ, ν)-narrow if for any ordinal µ ≤ ν and any sequence
f⃗ = ⟨fi | i < µ⟩ of partial ∥-homomorphisms fi : P → Ord,

|
∪
i<µ

ran(fi)| ≤ |max(θ, µ)|.

2. P is called θ-narrow if it is (θ, ν)-narrow for all ν ∈ Ord. It is called
narrow if it is ω-narrow.

We further call P uniformly (θ, ν)-narrow if there exists a function Gν that
sends each sequence f⃗ = ⟨fi | i < µ⟩ of partial ∥-homomorphisms
fi : P → Ord,1 where µ ≤ ν , to an injective function

Gν (⃗f) :
∪
i<µ

ran(fi) → max(|θ|, µ).

It is called uniformly narrow if it is uniformly ω-narrow.
1We can assume ran(fi) is an ordinal.
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Narrow forcings

Lemma

Every (θ, ν)-narrow forcing P preserves all cardinals and cofinalities
in the interval (θ, ν+].

Lemma

Suppose that θ, ν are cardinals, where θ is infinite, and f : P → Q is a
⊥-homomorphism.

1. Q is (θ, ν)-narrow, then P is (θ, ν)-narrow.

2. Q is uniformly (θ, ν)-narrow, then P is uniformly (θ, ν)-narrow.
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Narrow forcings

Theorem
Suppose that θ ≤ ν are infinite ordinals. Any uniform iteration of
(θ, ν)-narrow forcings with finite support is again uniformly
(θ, ν)-narrow.

This allows us to iterate a mix of Cohen forcing, Hechler forcing and
random algebras while preserving all cardinals and cofinalities.
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Random algebras

An α-Borel code for a subset of 2α is a subset of α that codes a set formed
from basic open subsets of 2α via complements and countable unions. Let
2(α) = {f | f : α ⇀ 2 finite.}.

Rα denotes the forcing that consists of all Borel codes for subsets of 2α

ordered by ≤. The quotient of Rα by =µ with the operations induced by ∨, ∧
and − is a Boolean algebra.

A forcing is called complete if every subset has a supremum. To show Rα is
complete, we associate to every A ∈ Rα its footprint fA = ⟨fA,t | t ∈ 2(α)⟩,
where fA,t denotes the relative measure:

fA,t :=
µ([p] ∩ Nt)

µ(Nt)
.

Let fA ≤ fB if fA,t ≤ fB,t for all t ∈ 2(α). Note that A ≤ B if and only if fA ≤ fB.
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Random algebras

Definition
Suppose that f⃗ = ⟨fs | s ∈ 2(α)⟩ is a sequence in R and x ∈ 2α.

1. For any ϵ > 0, x is called an ϵ-density point of f if

∃s ∀t ⊇ s ft > 1− ϵ.

2. x is called a density point of f if it is an ϵ-density point of f for all
ϵ ∈ Q+.

The α-Borel code induced by 2 is denoted D(f).
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Random algebras

To construct a least upper bound, we first form the least upper bound of the
footprints: let fX,t := supA∈X fA,t for each t ∈ 2(α) and

fX := ⟨fX,t | t ∈ 2(α)⟩.

Lemma

1. In any outer model W of V such that α is countable in W, D(fX) is a least
upper bound for X.

2. Rα is complete. More precisely, for any subset X of Rα the reduct of
D(fX) is a least upper bound for X.

The reduct is defined by induction on the rank by reducing each union by a
countable one.

Using completeness, we can show random algebras are uniformly narrow.
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Iterations of Hechler forcing

Theorem
Suppose that κ is a cardinal of uncountable cofinality. Then H(κ)

forces b = d = cof(κ).

Theorem
Suppose ν ≥ ω1 is multiplicatively closed and has countable
cofinality. Any uniform iteration Pν of nontrivial forcings with finite
support of length ν forces:

1. b = ω1 if Pν preserves ω1.

2. d ≥ |ν| if Pν preserves |ν| and d exists in the extension.

In particular, this holds for H(ν).
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Absoluteness



Absoluteness

Let M ≡ N denote that M and N are elementarily equivalent, i.e., they
have the same theories.

Definition

The unrestricted absoluteness principle AC for a class C of forcings
states that V ≡ V[G] for any generic extension of V by a forcing in C.
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Absoluteness

Lemma (folklore)
If x is a Cohen real over L[y] where y is a real, then y is not a random
real over L[x].

Theorem (Woodin)
Suppose κ is an uncountable cardinal. If H is Cκ-generic over V then
in V[H], there exists a subset A of ω1 such that there exists no random
real over L[A].

So for any κ ≥ ω2, Cκ- and Rκ-generic extensions have different
theories.
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Absoluteness

Let H(∗) denote the class of finite support iterations of Hechler
forcing.

Theorem
AH(∗) implies that all infinite cardinals have countable cofinality.

Proof.
First suppose that there exists some regular κ ≥ ω2. Then H(κ) forces
b = κ. Moreover, H(ℵω) forces b = ω1 by the above theorem. This
contradicts AH(∗) .

Now suppose ω1 is regular. Then H(ω1) forces d = ω1. However, H(ℵω)

forces that there exists no dominating family of size ω1. Again, this
contradicts AH(∗) .
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Absoluteness

Write A ≤i B if there exists an injective function from A into B. Let

c := sup{λ ∈ Card | λ ≤i 2ω}.

Remark
We claim that Cν forces c = ν for any ω-strong limit cardinal ν of
uncountable cofinality.

To see this, show ν+ ≤i Pω1(ν) using nice names for reals.

Since cof(ν) ≥ ω1, we have ν ≤i Pω1(µ) for some µ < ν , contradicting
that ν is an ω-strong limit.

Remark
AC∗ implies that there cannot exist two distinct uncountable regular
cardinals κ < λ. Otherwise we would have cof(c) = κ and cof(c) = λ

in some C(∗)-generic extensions, contradicting AC∗ .
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Absoluteness

Theorem (Woodin)
AC∗ implies that all infinite cardinals have countable cofinality.

The main step shows 1Cκ ⊩ c > κ for any ω-strong limit cardinal κ.

If there exist uncountable regular cardinals, then the previous
remark yields a contradiction.
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Gitik’s model

Gitik’s model:

• All infinite cardinals have countable cofinality.
• Constructed from a proper class of strongly compact cardinals.
• For each strongly compact κ and α ≥ κ, one can give α

countable cofinality using a strongly compact Prikry forcing at κ.
• The symmetric model contains all such Prikry sequences.

Problem:

• λ is a singular limit of strongly compacts ⟨κβ | β < cof(λ)⟩ and α

is the next inaccessible. One combines all κβ in the forcing at α
to ensure no bounded subsets of λ are added.
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Gitik’s model

Ps denotes the restriction of Gitik’s forcing P to a finite set s ⊆ Ord.

Lemma (Gitik)
For sufficiently closed finite s ⊆ Ord and strongly compact κξ ∈ s, Ps

is forcing equivalent to a forcing of the form Ps∩κξ
∗ Q̇, where:

• Ps∩κξ
has size ≤κξ .

• Ps∩κξ
forces that Q̇ adds no bounded subsets of κξ .
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Gitik’s model

Let
cκ = sup{λ ∈ Card | λ ≤i κ

ω}.

• In Gitik’s model, cκ = κ holds for all infinite cardinals κ using
the previous lemma

• AC∗ implies cκ = cVC
κ

ω > κ for all ω-strong limit cardinals.

Hence AC∗ fails in Gitik’s model
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Open questions

Is AC∗ consistent?

Can we produce more switches, for instance by separating Hechler
from Cohen models?

Regarding the notion of narrow forcing, do (ω, 1)-narrow forcings
preserve cardinals?

Gitik’s model is an interesting test case. Do the classical tree forcings
preserve ω1 over this model?
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