
Interaction of determinacy and forcing

Philipp Schlicht, University of Bristol
DMV meeting Berlin, 14 September 2022



Two themes

Projective determinacy is a useful axiom for studying definable sets
of reals beyond Borel and analytic sets.

Forcing is an important technique to study the independence of
properties of sets of reals.

Problem
Which forcings preserve projective determinacy?

Based on a joint project with Jonathan Schilhan (Leeds) and
Johannes Schürz (Vienna)
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Test question

Question
Does Cohen forcing preserve analytic determinacy?
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Determinacy

Fix a subset A of 2ω . In the game G(A), two players I and II alternate
playing moves with values 0 and 1.

I i0 i2 i4 i6 …
II i1 i3 i5 i7 …

II wins the run⇐⇒ x = ⟨in | n ∈ ω⟩ ∈ A

G(A) is called determined if I or II has a winning strategy.
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Projective determinacy

Theorem (Martin 1975)
All Borel sets are determined.

Projective determinacy (PD) is the statement that all projective sets are determined.

• An analytic or Σ1
1 set is the projection p[C] of a closed subset C of ωω × ωω to

the first coordinate.

• Π1
1 sets are complements of Σ1

1 sets.

• Σ1
2 sets are projections of Π1

1 sets etc.

• A set is projective if it is Σ1
n for some n.

Theorem (Mycielski, Swierczkowski 1964, Moschovakis 1971)
Assume projective determinacy.

1. All projective sets are Lebesgue measurable.

2. Every projective binary relation R on 2ω has a projective uniformisation.
A uniformisation of R is a subfunction of R with domain p[R].
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Forcing extensions

Suppose that M is a transitive model of ZFC.

Definition
Suppose that P ∈ M is a forcing, i.e. a poset with a largest element 1, and G is a subset
of P.

1. A P-name σ ∈ M is a set of pairs (τ, p), where τ is a P-name and p ∈ P.

2. The evaluation of σ by G is

σG = {τG | ∃(τ, p) ∈ σ, p ∈ G}.

3. The extension of M by G is

M[G] = {σG | σ ∈ M}.
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Cohen forcing

Forcing is easiest to illustrate if P is a tree.

Example
Cohen forcing is the poset P = 2<ω of all finite sequences p : n → 2, ordered by
reverse inclusion: p ≤ q if p extends q.

s t

G

2<ω

Then G is chosen as a branch. The function xG =
∪

p∈G p is called the Cohen real.

For posets, the analogue to a branch is a filter. G is always assumed to be a generic
filter.
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Sacks forcing

M[G] equals the least transitive model of ZFC that contains M as a subclass and G as
an element.

In fact M[G] = M[xG].

There are many other classical forcings that add a real and have this property.

Example
Sacks forcing is the poset P consisting of all perfect subtrees of 2<ω ordered by
inclusion: p ≤ q if p is a subtree of q.

Cohen and Sacks forcing can also be unterstood as a set of reals.
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The story of proper forcing

We want to preserve ω1 .

The problem is that iterating ω1-preserving forcings, i.e. forming iterated forcing
extensions, may collapse ω1 .

The countable chain condition (c.c.c.) states that P does not have uncountable
antichains. This suffices to preserve ω1 in iterations.

Cohen forcing has the c.c.c., but Sacks forcing does not.

It was known at least since Baumgartner that Sacks forcing can be iterated without
collapsing ω1 .

He proved this for Axiom A forcings. This class extends both c.c.c. and σ-closed.

Shelah isolated the more general notion of proper forcing.

P is called proper if it preserves stationary subsets of [λ]ω for all uncountable λ.
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What was known

Since it is easy to destroy determinacy if ω1 can be collapsed, we
assume P is proper.

Theorem (David 1978)
It is consistent that some Σ1

3-definable proper forcing destroys
analytic determinacy.

We therefore need to assume P is simply definable.

Analytic determinacy is closely linked with Σ1
3-absoluteness.

Theorem (Woodin 1982)
Analytic determinacy (actually uniformisation up to meager resp.
null) implies Σ1

3-absoluteness for Cohen and random forcing.
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What was known

Problem (Ikegami 2010)
Does every Borel proper forcing preserve analytic determinacy?1

Theorem (S. 2014)
Any Σ1

2 absolutely c.c.c. forcing preserves Π1
n-determinacy for each

n ≥ 1.

Theorem (Castiblanco, S. 2020)
Several classical tree forcings preserve Π1

n-determinacy for each
n ≥ 1.

1He asked this for absolutely ∆1
2 proper forcings.
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A related result

Theorem (Judah, Shelah 1988, Goldstern, Shelah 1992)
Over Solovay models, countable support iterations of Suslin
proper-for-candidates forcings preserve the property of Baire for all
projective sets.

A forcing (P,≤) on the reals is called Suslin if ≤ is analytic.

Proper-for-candidates is a condition that implies proper. Elementary
submodels M ≺ Hθ are replaced by countable transitive models of a
fragment of ZFC.
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Background

A cardinal κ is measurable if the following equivalent conditions
hold:

• There is a non-principal <κ-complete ultrafilter on κ.
• There is an elementary embedding j : V → N to some transitive
model N with crit(j) = κ.

Theorem (Levy, Solovay 1967)
If κ is measurable and P is a forcing of size |P| < κ, then κ remains
measurable in any P-generic extension V[G] of V.

Proof sketch.
Liǒt j : V → N to j∗ : V[G] → N[G] by letting j∗(σG) = j(σ)G.

Many variants of this theorem are known, for example for strong,
Woodin, supercompact cardinals.
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Background

Some large cardinal properties of small cardinals are preserved by
sufficiently nice forcings.

Theorem (Foreman 2013)
Generic supercompactness of ω1 is preserved by all proper forcings.
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Sharps

Definition (Silver et al.)
0# exists if (equivalently) each of the following objects exist:

1. An uncountable set of ordinals which are order-indiscernible
over L.

2. A non-trivial elementary embedding j : L → L.
3. A countable structure (Lα,∈,U) such that

• (Lα,∈) is a model of ZFC− with a largest cardinal κ,
• (Lα,∈,U) |= Σ0-separation + U is a <κ-complete ultrafilter on κ

• All iterated ultrapowers of (Lα,∈,U) are wellfounded.
The least such structure is denoted M#

0 .

More generally, x# is defined for any real x by replacing L with L[x].

A measurable cardinal implies that x# exists for all reals x.
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Analytic determinacy and sharps

Theorem (Martin 1970, Harrington 1978)
The following conditions are equivalent:

1. x# exists for all reals x
2. Analytic determinacy
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Cohen forcing

Proposition (folklore?)
Cohen forcing preserves analytic determinacy.

Proof.
Suppose:

• x# exists for all reals x.

• V[G] is a Cohen extension of V. Let x denote the Cohen real.

• σ is a name for a new real. We can assume σ is a nice name.

The name σ is essentially a real, since Cohen forcing has the c.c.c. Thus σ#

exists. Hence there is a nontrivial elementary embedding j : L[σ] → L[σ].

x is Cohen generic over L[σ], since Cohen forcing has the c.c.c. and
is Σ1

2-definable.

We can liǒt j to j∗ : L[σ][G] → L[σ][G] as in the Levy-Solovay theorem. Since
the new real σG ∈ L[σ][G], this yields (σG)# in V[x].
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Sacks forcing

Proposition (Castiblanco, S. 2020)
Sacks forcing P preserves analytic determinacy.

Proof sketch.
Again, we obtain a small P-name σ and a nontrivial elementary embedding
j : L[σ] → L[σ].

Force over L[σ] in V with finite subtrees of 2<ω ordered by end ex-
tension.

This adds a perfect tree T such that all its branches are Cohen reals over
L[σ]. This remains true in generic extensions of V.

Force with P below T ∈ P over V. Let x denote the Sacks real.

Then x is Cohen generic over L[σ].

Again, we can liǒt j to j∗ : L[σ][x] → L[σ][x] and obtain (σx)# in V[x].
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Capturing

Definition
1. An operator is a functionM that sends each real x to a structure

M(x) = (M(x),∈, E) such that

• x ∈ M(x), M(x) is transitive, M(x) |= ZFC− and E is M(x)-amenable.
2. M is called Q-amenable if eachM(x) is Q-amenable.

For example, letM(x) = (L(x),∈).

Definition (Castiblanco, S. 2020)
Suppose that P and Q are forcings and M is a Q-amenable operator. We say that P is
captured by Q over M if the following holds for any p ∈ P and any P-name τ for a real:
for any real x, there exists a real y with x ∈ L(y) such that some q ≤P p forces:

“There exists a Q ∩ M(y)-generic filter g over M(y) with τ ∈ M(y)[g].”

In other words, if H is a P-generic filter over V, then τH is contained in a Q-generic
extension of some M(y).
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Capturing

Capturing over L implies preservation of analytic determinacy, for
proper forcings on the reals.

All proper-for-candidates Suslin forcings are captured over L. This
includes most classical proper forcings which add a real.
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Iterable structures

One can reformulate the above preservation proofs using iterable
structures (M,∈,U) instead of elementary embeddings
j : L(σ) → L(σ).

The Cohen or Sacks real x over V is generic over some (M0,∈,U). The
iteration liǒts step by step to

M0[x] → M1[x] → · · · → Mα[x] → . . .
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Iterable structures

More generally, work with transitive structures (M,∈, E) where

• (M,∈) |= ZFC−

• E is an M-amenable sequence of (partial) extenders
• All extenders in E, except possibly the last one, are elements of M

A extender is a directed system of ultrafilters.

Definition
We call (M,∈, E) ω1-iterable if all ultrapowers in countable iteration trees
(Martin, Steel) on M using E, for some strategy choosing branches, are
wellfounded.

Definition
We call (M,∈, E) n-tall if M has n Woodin cardinals and a measurable
cardinal above them, witnessed by E. 2

An operatorM is called n-tall, …, if eachM(x) is n-tall, …

2In (M,∈, U), crit(U) is considered measurable. 21



A characterisation of PD

One may use the following reformulation of PD.

Theorem (Harrington, Martin, Steel, Woodin, Neeman)
The following statements are equivalent:

1. There exists an n-tall ω1-iterable operator M.
2. Π1

n+1-determinacy.
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Preservation of PD

The operatorM oǒten suffices to iterateM in the following sense.

Definition (Schilhan, Schürz, S. 2022)
Suppose thatM and N are operators. M is called N-iterable if there is a term t such
that for any real x and any countable iteration tree T onM(x):

1. (Existence) For any real y with T ∈ N(y), tN(y) is a wellfounded branch in T.

2. (Uniqueness) For all reals y and z with T ∈ N(y) and T ∈ N(z), tN(y) = tN(z) .

Definition (Schilhan, Schürz, S. 2022)
Suppose thatM and N are operators. M is called stably N-iterable if there is a term t
such that for any countable iteration tree T on a small generic extensionM(x)[g]:

1. (Existence) For any small generic extension N(y)[h] with T ∈ N(y)[h], tN(y)[h] is a
wellfounded branch in T.

2. (Uniqueness) For all small generic extensions N(y)[h] and N(z)[i] with
T ∈ N(y)[h] and T ∈ N(z)[i], tN(y)[h] = tN(z)[i] .
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Preservation of PD

In the above characterisation of Π1
n+1-determinacy, we can add that

M is (stably)M-iterable, since one can show

• theM#
n -operator from inner model theory is stablyM#

k -iterable
for any k ≥ n− 1.

Proposition (Schilhan, Schürz, S. 2022)
Suppose thatM is any stablyM-iterable P-amenable operator and P
is captured overM.

1. In any P-generic extension,M can be extended to an
M∗-iterable operatorM∗.

2. IfM is n-tall, thenM∗ is n-tall.
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Main result

Theorem (Schilhan, Schürz, S. 2021)
Let M be an operator such that ω1 is inaccessible in each M(x).
Suppose that P = ⟨Pα, Ṗα : α < κ⟩ is a countable support iteration of
proper-for-candidate Suslin forcing notions Pα such that for every
α < κ,

⊩Pα
Ṗα is proper-for-candidates in every small generic ex-

tension of any M(x).

Then P is captured over M by a countable support iteration of Suslin
proper-for-candidates forcings of countable length.
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Future directions

The results immediately imply projective absoluteness.

It is natural to aim for stronger determinacy principles using other
operators.

We have results about (not) adding classes to equivalence relations
by iterated forcing. However, at the moment this only works for c.c.c.
forcings and Sacks forcing.

To my knowledge, it is open whether proper implies
proper-for-candidates for Borel forcings, possibly assuming analytic
determinacy.
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