Forcing axioms via ground model interpretations

Philipp Schlicht, University of Bristol DMV-ÖMG Konferenz 2021 Passau, Sektion Logik 30. September 2021 Based on a joint project with Christopher Turner, University of Bristol.

 Philipp Schlicht, Christopher Turner: Forcing axioms via ground model interpretations, 46 pages

To be submitted on arxiv.org within the next week

 MA_{ω_1} , Martin's axiom at ω_1 (Martin and Solovay 1970) was introduced to axiomatise models obtained by iterated c.c.c. forcing constructions.

• It solves problems about properties of null sets, the size of 2^{\aleph_0} and others.

 MA_{ω_1} , Martin's axiom at ω_1 (Martin and Solovay 1970) was introduced to axiomatise models obtained by iterated c.c.c. forcing constructions.

• It solves problems about properties of null sets, the size of 2^{\aleph_0} and others.

PFA, the proper forcing axiom, was introduced in the 1970s.

• Baumgartner used it to settle many questions left open by MA_{ω_1} . For instance, he showed that any two \aleph_1 -dense sets of reals are isomorphic and \Box_{ω_1} fails.

Baumgartner (1984) introduced stronger forcing axioms $MA_{\omega_1}^+$ and *PFA*⁺. (His terminology was slightly different.) He used it to prove stationary reflection. Baumgartner (1984) introduced stronger forcing axioms $MA_{\omega_1}^+$ and *PFA*⁺. (His terminology was slightly different.) He used it to prove stationary reflection.

Theorem (Baumgartner 1984)

Suppose that PFA⁺ holds and $\kappa > \omega_1$ is regular. If $S \subseteq \kappa$ is stationary in cofinality ω , then $S \cap \alpha$ is stationary in α for some $\alpha < \kappa$ of uncountable cofinality.

Definition

Suppose that \mathbb{P} is a forcing and κ is an uncountable cardinal. The forcing axiom FA_{P, κ} says:

Whenever $\vec{D} = \langle D_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of predense subsets of \mathbb{P} , there is a filter g on \mathbb{P} such that $g \cap D_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$.

Definition

Suppose that \mathbb{P} is a forcing and κ is an uncountable cardinal. The forcing axiom FA_{P, κ} says:

Whenever $\vec{D} = \langle D_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of predense subsets of \mathbb{P} , there is a filter g on \mathbb{P} such that $g \cap D_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$.

Thus $MA_{\omega_1} = FA_{c.c.c.,\omega_1}$ and $PFA = FA_{proper,\omega_1}$.

Definition

The forcing axiom $FA^+_{\mathbb{P},\kappa}$ says:

Suppose $\vec{D} = \langle D_{\alpha} : \alpha < \kappa \rangle$ is a sequence of dense subsets of \mathbb{P} and σ is a nice name for a subset of κ such that $\Vdash_{\mathbb{P}}$ " σ is stationary". Then there is a filter g such that

- 1. For all α , $g \cap D_{\alpha} \neq \emptyset$; and
- 2. σ^{g} is stationary.

• $MA_{\omega_1} \Rightarrow MA_{\omega_1}^+$ (Baumgartner 1984, unpublished)

- $MA_{\omega_1} \Rightarrow MA_{\omega_1}^+$ (Baumgartner 1984, unpublished)
- $FA_{\sigma-closed} \neq FA_{\sigma-closed}^+$ (Baumgartner 1984)

- $MA_{\omega_1} \Rightarrow MA_{\omega_1}^+$ (Baumgartner 1984, unpublished)
- $FA_{\sigma-closed} \not\Rightarrow FA_{\sigma-closed}^+$ (Baumgartner 1984)
- PFA ⇒ PFA⁺ (Beaudoin 1987, Magidor 1987) via the failure of stationary reflection

- $MA_{\omega_1} \Rightarrow MA_{\omega_1}^+$ (Baumgartner 1984, unpublished)
- $FA_{\sigma-closed} \not\Rightarrow FA_{\sigma-closed}^+$ (Baumgartner 1984)
- PFA ⇒ PFA⁺ (Beaudoin 1987, Magidor 1987) via the failure of stationary reflection
- $MM \Rightarrow PFA^+$ (Shelah 1987)

The second part of the definition of $MA_{\omega_1}^+$ and PFA^+ is a special case of a class of name principles. The most basic one is defined as follows:

The second part of the definition of $MA_{\omega_1}^+$ and PFA^+ is a special case of a class of name principles. The most basic one is defined as follows:

Definition

Suppose that κ is an uncountable cardinal. The name principle ${\sf N}_{\mathbb{P},\kappa}$ says:

"Whenever σ is a nice name for a subset of κ and A is a subset of κ such that $\Vdash_{\mathbb{P}} \sigma = \check{A}$, then there is a filter $g \in V$ such that $\sigma^g = A$." One can replace the formula " $x = \check{A}$ " in the previous definition by any other formula $\varphi(x)$ and thus define $\varphi - N_{\mathbb{P},\kappa}$. One can replace the formula " $x = \check{A}$ " in the previous definition by any other formula $\varphi(x)$ and thus define $\varphi - \mathbb{N}_{\mathbb{P},\kappa}$.

Definition

Suppose that κ is an uncountable cardinal. The simultaneous Σ_0 -name principle $\Sigma_0^{(sim)}$ -N_{P, κ} says:

"Whenever $\sigma_0, \ldots, \sigma_n$ are nice names for subsets of κ , there is a filter g in V such that $\varphi(\sigma_0^g, \ldots, \sigma_n^g)$ holds for every Σ_0 -formula φ such that $\Vdash_{\mathbb{P}} \varphi(\sigma_0, \ldots, \sigma_n)$."

Example

 $FA_{\mathbb{P},\omega_1}$ implies that \mathbb{P} does not force that any given stationary subset S of ω_1 is destroyed. Why does this follow from the Σ_0 -name principle?

Towards a contradiction, suppose there is a name τ for a club with $\Vdash_{\mathbb{P}} \tau \cap S = \emptyset$. By the Σ_0 -name principle, there is a filter $g \in V$ such that τ^g is club and $\tau^g \cap S = \emptyset$. But the existence of τ^g contradicts the assumption that *S* is stationary.

The main result, simplified

Theorem

Suppose that \mathbb{P} is a forcing and κ is an uncountable cardinal. Then the following statements are equivalent:

- 1. $\mathsf{FA}_{\mathbb{P},\kappa}$
- 2. The name principle $\mathbb{N}_{\mathbb{P},\kappa}$ for the formula $\sigma = \kappa$, where σ is any nice name for a subset of κ .
- 3. The simultaneous name principle $\Sigma_0^{(sim)}$ -N_{P, κ} for all first-order formulas over the structure (κ, \in, σ), where σ is any nice name for a subset of κ .

The main result, simplified

Theorem

Suppose that \mathbb{P} is a forcing and κ is an uncountable cardinal. Then the following statements are equivalent:

- 1. $FA_{\mathbb{P},\kappa}$
- 2. The name principle $N_{\mathbb{P},\kappa}$ for the formula $\sigma = \kappa$, where σ is any nice name for a subset of κ .
- 3. The simultaneous name principle $\Sigma_0^{(sim)}$ -N_{P, κ} for all first-order formulas over the structure (κ, \in, σ), where σ is any nice name for a subset of κ .

The main results are more general and cover:

(i) Names of arbitrary ranks instead of nice (i.e. rank 1) names

(ii) Bounded forcing axioms and bounded name principles

Lemma $FA_{\mathbb{P},\omega_1} \iff N_{\mathbb{P},\omega_1}.$

Lemma

 $\mathsf{FA}_{\mathbb{P},\omega_1} \Longleftrightarrow \mathsf{N}_{\mathbb{P},\omega_1}.$

Proof.

 \Leftarrow : Let $\langle D_{\alpha} \mid \alpha < \omega_1 \rangle$ be a sequence of predense sets in \mathbb{P} . Let

$$\sigma = \{ \langle \check{\alpha}, p \rangle : \alpha < \omega_1, \ p \in D_\alpha \}$$

Then $\Vdash_{\mathbb{P}} \sigma = \omega_1$.

A proof sketch

Lemma

 $\mathsf{FA}_{\mathbb{P},\omega_1} \iff \mathsf{N}_{\mathbb{P},\omega_1}.$

Proof.

 \Rightarrow : Suppose σ is a nice name for a subset of ω_1 and $\Vdash_{\mathbb{P}} \sigma = \check{A}$.

We want a filter g with $\sigma^g = A$. Note that $\sigma^g \subseteq A$ holds for any filter g on \mathbb{P} , since σ is a nice name.

A proof sketch

Lemma

 $FA_{\mathbb{P},\omega_1} \iff N_{\mathbb{P},\omega_1}.$

Proof.

 \Rightarrow : Suppose σ is a nice name for a subset of ω_1 and $\Vdash_{\mathbb{P}} \sigma = \check{A}$.

We want a filter g with $\sigma^g = A$. Note that $\sigma^g \subseteq A$ holds for any filter g on \mathbb{P} , since σ is a nice name.

For each $\alpha \in A$,

$$D_{\alpha} = \{ p \in \mathbb{P} : \langle \check{\alpha}, p \rangle \in \sigma \}$$

is predense since $\Vdash_{\mathbb{P}} \sigma = \check{A}$.

A proof sketch

Lemma

 $FA_{\mathbb{P},\omega_1} \iff N_{\mathbb{P},\omega_1}.$

Proof.

 \Rightarrow : Suppose σ is a nice name for a subset of ω_1 and $\Vdash_{\mathbb{P}} \sigma = \check{A}$.

We want a filter g with $\sigma^g = A$. Note that $\sigma^g \subseteq A$ holds for any filter g on \mathbb{P} , since σ is a nice name.

For each $\alpha \in A$,

$$D_{\alpha} = \{ p \in \mathbb{P} : \langle \check{\alpha}, p \rangle \in \sigma \}$$

is predense since $\Vdash_{\mathbb{P}} \sigma = \check{A}$.

Let g meet D_{α} for all $\alpha \in A$. Then for all $\alpha \in A$, $\alpha = \check{\alpha}^g \in \sigma^g$. \Box_{10}

Subcomplete forcing was introduced and studied by Jensen. While the proper forcing axiom implies ¬CH, the subcomplete forcing axiom SCFA is compatible with CH. Subcomplete forcing was introduced and studied by Jensen. While the proper forcing axiom implies ¬CH, the subcomplete forcing axiom SCFA is compatible with CH.

Assuming CH, we have

 $\mathsf{SCFA} \Longleftrightarrow \Sigma_0^{(\mathrm{sim})} \mathsf{-} \mathsf{N}_{\mathrm{subcomplete}, X, \omega_1}(2) \Longleftrightarrow \mathsf{N}_{\mathrm{subcomplete}, X, \omega_1}(2)$

for some transitive $X \in H_{\omega_1}$.

This means rank 2 names σ for ground model subsets of X, i.e. such that the names appearing in σ are nice names, can be interpreted correctly.

Applications II

Theorem

Suppose that κ is an uncountable cardinal and \mathbb{P} is a forcing. Then conditions 1, 2, 3 are equivalent:

- 1. $\mathsf{BFA}_{\mathbb{P},\kappa}$
- 2. $\Sigma_0^{(sim)}$ -BN_{P, κ}
- 3. $\Vdash_{\mathbb{P}} V \prec_{\Sigma_1^1(\kappa)} V[\dot{G}]$

Applications II

Theorem

Suppose that κ is an uncountable cardinal and \mathbb{P} is a forcing. Then conditions 1, 2, 3 are equivalent:

- 1. $\mathsf{BFA}_{\mathbb{P},\kappa}$
- 2. $\Sigma_0^{(sim)}$ -BN_{P, κ}
- 3. $\Vdash_{\mathbb{P}} V \prec_{\Sigma_1^1(\kappa)} V[\dot{G}]$

If $cof(\kappa) > \omega$, or $cof(\kappa) = \omega$ and there exists no inner model with a Woodin cardinal, then these are also equivalent to 4:

4. $\Vdash_{\mathbb{P}} H_{\kappa^+}^{\vee} \prec_{\Sigma_1} H_{\kappa^+}^{\vee[\dot{G}]}$

Applications II

Theorem

Suppose that κ is an uncountable cardinal and \mathbb{P} is a forcing. Then conditions 1, 2, 3 are equivalent:

- 1. $\mathsf{BFA}_{\mathbb{P},\kappa}$
- 2. $\Sigma_0^{(sim)}$ -BN_{P, κ}
- 3. $\Vdash_{\mathbb{P}} V \prec_{\Sigma_1^1(\kappa)} V[\dot{G}]$

If $cof(\kappa) > \omega$, or $cof(\kappa) = \omega$ and there exists no inner model with a Woodin cardinal, then these are also equivalent to 4:

4. $\Vdash_{\mathbb{P}} H_{\kappa^+}^{\vee} \prec_{\Sigma_1} H_{\kappa^+}^{\vee[\dot{G}]}$

If $\operatorname{cof}(\kappa) = \omega$ and $2^{<\kappa} = \kappa$, then these are equivalent to 5:

5. 1_P forces that there are no new bounded subset of κ in V[\dot{G}] ¹²

We began an analysis of various name principles for notions of largeness for subsets of κ , e.g. being unbounded or stationary.

We began an analysis of various name principles for notions of largeness for subsets of κ , e.g. being unbounded or stationary.

To this end, it is useful to study new forcing axioms such as:

Definition

Let κ be a cardinal. The unbounded forcing axiom ub-FA_{P, κ} says:

"If $\langle D_{\gamma} : \gamma < \kappa \rangle$ is a sequence of κ many predense sets, then there is a filter $g \in V$ which meets unboundedly many D_{γ} ."

Problem

Under which conditions on \mathbb{P} does ub- $FA_{\mathbb{P},\omega_1} \implies FA_{\mathbb{P},\omega_1}$ hold?

Problem

Under which conditions on \mathbb{P} does ub-FA_{P, $\omega_1} <math>\implies$ FA_{P, ω_1} hold?</sub>

Observation

For any σ -distributive forcing \mathbb{P} , ub-FA_{P, ω_1} \implies FA_{P, ω_1}.

Problem

Under which conditions on \mathbb{P} does ub-FA_{P, ω_1} \implies FA_{P, ω_1} hold?

Observation

For any σ -distributive forcing \mathbb{P} , ub-FA_{P, ω_1} \implies FA_{P, ω_1}.

An application of the previous theorem:

Corollary

If $\mathbb P$ is a complete Boolean algebra that does not add reals, then

$$(\forall q \in \mathbb{P} \text{ ub-FA}_{\mathbb{P}_q,\omega_1}) \Longrightarrow \mathsf{BFA}_{\mathbb{P},\omega_1}^{\omega_1}.$$

New forcing axioms

If \mathbb{P} adds reals, then the implication $ub-FA_{\mathbb{P},\omega_1} \implies FA_{\mathbb{P},\omega_1}$ may or may not hold:

ub-FA_{P, ω_1} holds for Cohen forcing and in fact for all σ -centred forcings. But FA_{Cohen, ω_1} implies \neg CH.

New forcing axioms

If \mathbb{P} adds reals, then the implication ub-FA_{\mathbb{P},ω_1} \implies FA_{\mathbb{P},ω_1} may or may not hold:

ub-FA_{P, ω_1} holds for Cohen forcing and in fact for all σ -centred forcings. But FA_{Cohen, ω_1} implies \neg CH.

Proposition

Let ${\mathbb Q}$ be random forcing. The following are equivalent:

- 1. $FA_{\mathbb{Q},\omega_1}$
- 2. ub-FA_{Q,ω1}
- 3. 2^{ω} is not the union of ω_1 many null sets

New forcing axioms

If \mathbb{P} adds reals, then the implication ub-FA_{\mathbb{P},ω_1} \implies FA_{\mathbb{P},ω_1} may or may not hold:

ub-FA_{P, ω_1} holds for Cohen forcing and in fact for all σ -centred forcings. But FA_{Cohen, ω_1} implies \neg CH.

Proposition

Let ${\mathbb Q}$ be random forcing. The following are equivalent:

- 1. $FA_{\mathbb{Q},\omega_1}$
- 2. ub-FA $_{\mathbb{Q},\omega_1}$
- 3. 2^{ω} is not the union of ω_1 many null sets

We also don't know if $ub-FA_{\mathbb{P},\kappa}$ always implies stat-FA_{\mathbb{P},κ}. There are numerous interesting open questions in our preprint!