Forcing axioms via ground model interpretations

Philipp Schlicht, University of Bristol Barcelona Set Theory Seminar, 8 December 2021 Based on a joint project with Christopher Turner, University of Bristol.

 Philipp Schlicht, Christopher Turner: Forcing axioms via ground model interpretations, 49 pages
Submitted, preprint available on arxiv.org MA_{ω_1} , Martin's axiom at ω_1 (independently Martin, Kunen, Rowbottom, Tennenbaum 1970) was introduced to axiomatise models obtained by iterated c.c.c. forcing constructions.

• It solves problems about properties of null sets, the size of 2^{\aleph_0} and others.

 MA_{ω_1} , Martin's axiom at ω_1 (independently Martin, Kunen, Rowbottom, Tennenbaum 1970) was introduced to axiomatise models obtained by iterated c.c.c. forcing constructions.

• It solves problems about properties of null sets, the size of 2^{\aleph_0} and others.

PFA, the proper forcing axiom, was introduced in the 1970s by Shelah.

 Baumgartner used it to settle many questions left open by MA_{ω1}. For instance, he showed that any two ℵ₁-dense sets of reals are isomorphic. Todorčević showed that □_{ω1} fails. Baumgartner (1984) introduced stronger forcing axioms $MA_{\omega_1}^+$ and *PFA*⁺. (His terminology was slightly different.) He used it to prove stationary reflection. Baumgartner (1984) introduced stronger forcing axioms $MA_{\omega_1}^+$ and *PFA*⁺. (His terminology was slightly different.) He used it to prove stationary reflection.

Theorem (Baumgartner 1984)

Suppose that PFA⁺ holds and $\kappa > \omega_1$ is regular. If $S \subseteq \kappa$ is stationary in cofinality ω , then $S \cap \alpha$ is stationary in α for some $\alpha < \kappa$ of uncountable cofinality.

Suppose that \mathbb{P} is a forcing and κ is an uncountable cardinal. The forcing axiom FA_{P, κ} says:

Whenever $\vec{D} = \langle D_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of predense subsets of \mathbb{P} , there is a filter g on \mathbb{P} such that $g \cap D_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$.

Suppose that \mathbb{P} is a forcing and κ is an uncountable cardinal. The forcing axiom FA_{P, κ} says:

Whenever $\vec{D} = \langle D_{\alpha} \mid \alpha < \kappa \rangle$ is a sequence of predense subsets of \mathbb{P} , there is a filter g on \mathbb{P} such that $g \cap D_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$.

Thus $MA_{\omega_1} = FA_{c.c.c.,\omega_1}$ and $PFA = FA_{proper,\omega_1}$.

The forcing axiom $FA^+_{\mathbb{P},\kappa}$ says:

Suppose $\vec{D} = \langle D_{\alpha} : \alpha < \kappa \rangle$ is a sequence of dense subsets of \mathbb{P} and σ is a nice name for a subset of κ such that $\Vdash_{\mathbb{P}}$ " σ is stationary". Then there is a filter g such that

- 1. For all α , $g \cap D_{\alpha} \neq \emptyset$; and
- 2. σ^{g} is stationary.

• $MA_{\omega_1} \Rightarrow MA_{\omega_1}^+$ (Baumgartner 1984, unpublished)

- $MA_{\omega_1} \Rightarrow MA_{\omega_1}^+$ (Baumgartner 1984, unpublished)
- $FA_{\sigma-closed} \neq FA_{\sigma-closed}^+$ (Baumgartner 1984)

- $MA_{\omega_1} \Rightarrow MA_{\omega_1}^+$ (Baumgartner 1984, unpublished)
- $FA_{\sigma-closed} \not\Rightarrow FA_{\sigma-closed}^+$ (Baumgartner 1984)
- PFA ⇒ PFA⁺ (Beaudoin 1987, Magidor 1987) via the failure of stationary reflection

- $MA_{\omega_1} \Rightarrow MA_{\omega_1}^+$ (Baumgartner 1984, unpublished)
- $FA_{\sigma-closed} \not\Rightarrow FA_{\sigma-closed}^+$ (Baumgartner 1984)
- PFA ⇒ PFA⁺ (Beaudoin 1987, Magidor 1987) via the failure of stationary reflection
- $MM \Rightarrow PFA^+$ (Shelah 1987)

The second part of the definition of $MA_{\omega_1}^+$ and PFA^+ is a special case of a class of name principles. The most basic one is defined as follows:

The second part of the definition of $MA_{\omega_1}^+$ and PFA^+ is a special case of a class of name principles. The most basic one is defined as follows:

Definition

Suppose that κ is an uncountable cardinal. The name principle ${\sf N}_{\mathbb{P},\kappa}$ says:

"Whenever σ is a nice name for a subset of κ and A is a subset of κ such that $\Vdash_{\mathbb{P}} \sigma = \check{A}$, then there is a filter $g \in V$ such that $\sigma^g = A$." One can replace the formula " $x = \check{A}$ " in the previous definition by any other formula $\varphi(x)$ and thus define $\varphi - N_{\mathbb{P},\kappa}$. One can replace the formula " $x = \check{A}$ " in the previous definition by any other formula $\varphi(x)$ and thus define $\varphi - \mathbb{N}_{\mathbb{P},\kappa}$.

Definition

Suppose that κ is an uncountable cardinal. The simultaneous Σ_0 -name principle $\Sigma_0^{(sim)}$ -N_{P, κ} says:

"Whenever $\sigma_0, \ldots, \sigma_n$ are nice names for subsets of κ , there is a filter g in V such that $\varphi(\sigma_0^g, \ldots, \sigma_n^g)$ holds for every Σ_0 -formula φ such that $\Vdash_{\mathbb{P}} \varphi(\sigma_0, \ldots, \sigma_n)$."

Example

 $FA_{\mathbb{P},\omega_1}$ implies that \mathbb{P} does not force that any given stationary subset S of ω_1 is destroyed. Why does this follow from the Σ_0 -name principle?

Towards a contradiction, suppose there is a name τ for a club with $\Vdash_{\mathbb{P}} \tau \cap S = \emptyset$. By the Σ_0 -name principle, there is a filter $g \in V$ such that τ^g is club and $\tau^g \cap S = \emptyset$. But the existence of τ^g contradicts the assumption that *S* is stationary.

Theorem

Suppose that \mathbb{P} is a forcing and κ is an uncountable cardinal. Then the following statements are equivalent:

1. $FA_{\mathbb{P},\kappa}$

- 2. The name principle $N_{\mathbb{P},\kappa}$ for the formula $\sigma = \kappa$, where σ is any nice name for a subset of κ .
- 3. The simultaneous name principle $\Sigma_0^{(sim)}$ -N_{P, κ} for all first-order formulas over the structure (κ, \in, σ), where σ is any nice name for a subset of κ .

Theorem

Suppose that \mathbb{P} is a forcing and κ is an uncountable cardinal. Then the following statements are equivalent:

1. $FA_{\mathbb{P},\kappa}$

- 2. The name principle $N_{\mathbb{P},\kappa}$ for the formula $\sigma = \kappa$, where σ is any nice name for a subset of κ .
- 3. The simultaneous name principle $\Sigma_0^{(sim)}$ -N_{P, κ} for all first-order formulas over the structure (κ, \in, σ), where σ is any nice name for a subset of κ .

Lemma $FA_{\mathbb{P},\omega_1} \iff N_{\mathbb{P},\omega_1}.$

Lemma

 $\mathsf{FA}_{\mathbb{P},\omega_1} \iff \mathsf{N}_{\mathbb{P},\omega_1}.$

Proof.

 \Leftarrow : Let $\langle D_{\alpha} \mid \alpha < \omega_1 \rangle$ be a sequence of predense sets in \mathbb{P} . Let

$$\sigma = \{ \langle \check{\alpha}, p \rangle : \alpha < \omega_1, \ p \in D_\alpha \}$$

Then $\Vdash_{\mathbb{P}} \sigma = \omega_1$.

A proof sketch

Lemma

 $\mathsf{FA}_{\mathbb{P},\omega_1} \iff \mathsf{N}_{\mathbb{P},\omega_1}.$

Proof.

 \Rightarrow : Suppose σ is a nice name for a subset of ω_1 and $\Vdash_{\mathbb{P}} \sigma = \check{A}$.

We want a filter g with $\sigma^g = A$. Note that $\sigma^g \subseteq A$ holds for any filter g on \mathbb{P} , since σ is a nice name.

A proof sketch

Lemma

 $\mathsf{FA}_{\mathbb{P},\omega_1} \iff \mathsf{N}_{\mathbb{P},\omega_1}.$

Proof.

 \Rightarrow : Suppose σ is a nice name for a subset of ω_1 and $\Vdash_{\mathbb{P}} \sigma = \check{A}$.

We want a filter g with $\sigma^g = A$. Note that $\sigma^g \subseteq A$ holds for any filter g on \mathbb{P} , since σ is a nice name.

For each $\alpha \in A$,

$$D_{\alpha} = \{ p \in \mathbb{P} : \langle \check{\alpha}, p \rangle \in \sigma \}$$

is predense since $\Vdash_{\mathbb{P}} \sigma = \check{A}$.

Let g meet D_{α} for all $\alpha \in A$. Then for all $\alpha \in A$, $\alpha = \check{\alpha}^g \in \sigma^g$. \Box_{10}

Lemma

 $\mathsf{FA}_{\mathbb{P},\omega_1} \Longleftrightarrow \Sigma_0^{(\mathrm{sim})} \text{-} \mathsf{N}_{\mathbb{P},\kappa}.$

Proof.

 \Leftarrow : By the previous lemma, since N_{P,κ} follows from $\Sigma_0^{(sim)}$ -N_{P,κ} as a special case for the formula $\sigma = \check{A}$.

 \Rightarrow : By induction on formulas as described below.

A name σ has (name) rank α if either

1. $\alpha = 0$ and $\sigma = \check{x}$ for some x, or

2. $\alpha > 0$ is least such that every name in σ has rank $< \alpha$.

A name σ has (name) rank α if either

1. $\alpha = 0$ and $\sigma = \check{x}$ for some x, or

2. $\alpha > 0$ is least such that every name in σ has rank $< \alpha$.

Definition

A name σ is *locally* κ -small if there are at most κ many names τ such that for some $p \in \mathbb{P}$, $\langle \tau, p \rangle \in \sigma$.

 σ is κ -small if it has rank 0, or it is locally κ -small and all the names it contains are κ -small.

Rank 1 names for subsets of κ are always small.

A name σ has (name) rank α if either

1. $\alpha = 0$ and $\sigma = \check{x}$ for some x, or

2. $\alpha > 0$ is least such that every name in σ has rank $< \alpha$.

Definition

A name σ is *locally* λ -*bounded* if for every name τ , there are at most λ many $p \in \mathbb{P}$ such that $\langle \tau, p \rangle \in \sigma$.

 σ is λ -bounded if it is rank 0, or is locally λ -bounded and all the names it contains are λ -bounded.

Suppose that $\alpha \in \text{Ord} \cup \{\infty\}$ and X is a set of size $\leq \kappa$.

Definition

The name principle $N_{\mathbb{P},\kappa}(\alpha)$ states:

If σ is a κ -small name of rank $\leq \alpha$ and $A \in H_{\kappa^+} \cap P^{\alpha}(X)$ is such that $\mathbb{P} \Vdash \sigma = \check{A}$, then there is a filter $g \in V$ with $\sigma^g = A$.

Note: The requirement $A \in H_{\kappa^+}$ is necessary, since for some \mathbb{P} there are ω -bounded rank 2 names $\sigma \in H_{\omega_1}$ for $P(\omega)^V$.

Suppose that $\alpha \in \text{Ord} \cup \{\infty\}$ and X is a set of size $\leq \kappa$.

Definition

The name principle $N_{\mathbb{P},\kappa}(\alpha)$ states:

If σ is a κ -small name of rank $\leq \alpha$ and $A \in H_{\kappa^+} \cap P^{\alpha}(X)$ is such that $\mathbb{P} \Vdash \sigma = \check{A}$, then there is a filter $g \in V$ with $\sigma^g = A$.

Note: The requirement $A \in H_{\kappa^+}$ is necessary, since for some \mathbb{P} there are ω -bounded rank 2 names $\sigma \in H_{\omega_1}$ for $P(\omega)^V$.

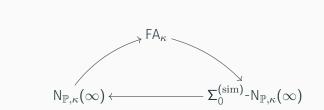
Definition

The first order name principle $\Sigma_0^{(\text{sim})}$ -N_{P, κ}(α) states: If $\sigma_1, \ldots, \sigma_n$ are κ -small names of rank $\leq \alpha$ and $\varphi(v_1, \ldots, v_n)$ is any Σ_0 formula such that $\mathbb{P} \Vdash \varphi(\vec{\sigma})$, then there is a filter $g \in V$ such that $V \vDash \varphi(\vec{\sigma}^g)$.

Theorem

1.

Let \mathbb{P} be a forcing and let κ be a cardinal. The following implications hold, given the assumptions noted at the arrows:

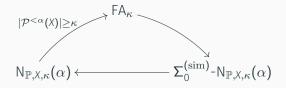


A similar result holds for the λ -bounded versions, where $\lambda \geq \kappa$ is a cardinal.

Theorem

Let \mathbb{P} be a forcing and let κ be a cardinal. The following implications hold, given the assumptions noted at the arrows:

 For any ordinal α > 0, and any transitive set X of size at most κ:



A similar result holds for the λ -bounded versions, where $\lambda \geq \kappa$ is a cardinal.

A proof sketch

Lemma

Let $\vec{\sigma}$ be a finite tuple of κ -small names and let φ be Σ_0 . Then there is a collection $\mathcal{D} = \mathcal{D}_{\varphi(\vec{\sigma})}$ of at most κ many dense sets, such that if g is any filter and

- 1. g meets every element of $\ensuremath{\mathcal{D}}$
- 2. g contains some p such that $p \Vdash \varphi(\vec{\sigma})$

then $V \vDash \varphi(\vec{\sigma}^g)$.

A proof sketch

Lemma

Let $\vec{\sigma}$ be a finite tuple of κ -small names and let φ be Σ_0 . Then there is a collection $\mathcal{D} = \mathcal{D}_{\varphi(\vec{\sigma})}$ of at most κ many dense sets, such that if g is any filter and

- 1. g meets every element of $\ensuremath{\mathcal{D}}$
- 2. g contains some p such that $p \Vdash \varphi(\vec{\sigma})$

then $V \vDash \varphi(\vec{\sigma}^g)$.

We prove the lemma for the following cases in turn:

- 1. φ is of the form $\sigma = \check{A}$
- 2. φ is of the form $\tau = \sigma$
- 3. φ is of the form $\tau \in \sigma$
- 4. φ is a negation of one of the above three forms
- 5. Arbitrary φ

φ is of the form $\sigma = \check{A}$

Proof (σ = Å **case, sketch).** Induction on the rank of σ .

Write the elements of σ as $\tau_{\gamma} : \gamma < \kappa$.

For $B \in A$, define a dense set D_B to ensure that B ends up in σ^g :

$$D_{B} = \left\{ p \in \mathbb{P} : p \Vdash \sigma \neq \check{A} \lor \exists \gamma (p \Vdash^{+} \tau_{\gamma} \in \sigma \land p \Vdash \tau_{\gamma} = \check{B}) \right\}$$

For $\gamma < \kappa$, define a dense set E_{γ} in a similar way. Let

$$\mathcal{D}_{\sigma=\check{A}} = \{ D_B : B \in A \} \cup \{ E_{\gamma} : \gamma < \kappa \} \cup \bigcup_{B \in A, \gamma < \kappa} \mathcal{D}_{\tau_{\gamma} = \check{B}}$$

We can characterize PFA as follows:

$$\mathsf{PFA} \Longleftrightarrow \Sigma_0^{(\mathrm{sim})} \operatorname{-N}_{\mathrm{proper},\omega_1} \Longleftrightarrow \mathsf{N}_{\mathrm{proper},\omega_1}.$$

In other words, rank 1 names for ω_1 can be interpreted correctly.

$$\mathsf{PFA} \Longleftrightarrow \Sigma_0^{(\mathrm{sim})} \mathsf{-} \mathsf{N}_{\mathrm{proper},\omega,\omega_1}(2) \Longleftrightarrow \mathsf{N}_{\mathrm{proper},\omega,\omega_1}(2).$$

So rank 2 names for sets of reals can be interpreted correctly.

Theorem (Bagaria 2000)

Let \mathbb{P} be a partial ordering and κ an infinite cardinal of uncountable cofinality. Then the following are equivalent:

- 1. $\mathsf{BFA}_{\kappa}(\mathbb{P})$
- 2. $\Sigma_1(H_{\kappa^+})$ -absoluteness for \mathbb{P} .

This builds on a previous result of Bagaria (1997).

Before, Fuchino had characterised Martin's axiom by the existence of embeddings (1992).

Applications II

Theorem

Suppose that κ is an uncountable cardinal and \mathbb{P} is a forcing. Then conditions 1, 2, 3 are equivalent:

- 1. $\mathsf{BFA}_{\mathbb{P},\kappa}$
- 2. $\Sigma_0^{(sim)}$ -BN_{P, κ}
- 3. $\Vdash_{\mathbb{P}} V \prec_{\Sigma_1^1(\kappa)} V[\dot{G}]$

Applications II

Theorem

Suppose that κ is an uncountable cardinal and \mathbb{P} is a forcing. Then conditions 1, 2, 3 are equivalent:

- 1. $\mathsf{BFA}_{\mathbb{P},\kappa}$
- 2. $\Sigma_0^{(sim)}$ -BN_{P, κ}
- 3. $\Vdash_{\mathbb{P}} V \prec_{\Sigma_1^1(\kappa)} V[\dot{G}]$

If $cof(\kappa) > \omega$, or $cof(\kappa) = \omega$ and there exists no inner model with a Woodin cardinal, then these are also equivalent to 4:

4. $\Vdash_{\mathbb{P}} H_{\kappa^+}^{\vee} \prec_{\Sigma_1} H_{\kappa^+}^{\vee[\dot{G}]}$

Applications II

Theorem

Suppose that κ is an uncountable cardinal and \mathbb{P} is a forcing. Then conditions 1, 2, 3 are equivalent:

- 1. $\mathsf{BFA}_{\mathbb{P},\kappa}$
- 2. $\Sigma_0^{(sim)}$ -BN_{P, κ}
- 3. $\Vdash_{\mathbb{P}} V \prec_{\Sigma_1^1(\kappa)} V[\dot{G}]$

If $cof(\kappa) > \omega$, or $cof(\kappa) = \omega$ and there exists no inner model with a Woodin cardinal, then these are also equivalent to 4:

4. $\Vdash_{\mathbb{P}} H_{\kappa^+}^{\vee} \prec_{\Sigma_1} H_{\kappa^+}^{\vee[\dot{G}]}$

If $\operatorname{cof}(\kappa) = \omega$ and $2^{<\kappa} = \kappa$, then these are equivalent to 5:

5. 1_P forces that there are no new bounded subset of κ in V[\dot{G}] ¹⁹

Theorem

The following statements are equivalent for Boolean ultrapower embeddings $j_U : V \rightarrow \check{V}_U$:

1. $\mathsf{FA}_{\mathbb{P},\kappa}$

2. For any transitive set $M \in H_{\kappa^+}$ and for every κ -small *M*-name σ , there is an ultrafilter $U \in V$ on \mathbb{P} such that

 $j_U \upharpoonright M \colon M \to j_U(M)^{\in_U}$

is an elementary embedding from (M, \in, σ^U) to $(j_U(M)^{\in_U}, \in_U, [\sigma]_U)$.

We began an analysis of various name principles for notions of largeness for subsets of κ , e.g. being unbounded or stationary.

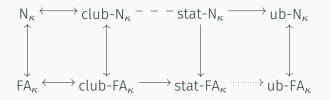
We began an analysis of various name principles for notions of largeness for subsets of κ , e.g. being unbounded or stationary.

To this end, it is useful to study new forcing axioms such as:

Definition

Let κ be a cardinal. The unbounded forcing axiom ub-FA_{P, κ} says:

"If $\langle D_{\gamma} : \gamma < \kappa \rangle$ is a sequence of κ many predense sets, then there is a filter $g \in V$ which meets unboundedly many D_{γ} ."



Solid arrows: non-reversible implications Dotted arrows: implications whose converse remains open Dashed lines: no implication is provable

Problem

Under which conditions on \mathbb{P} does ub- $FA_{\mathbb{P},\omega_1} \implies FA_{\mathbb{P},\omega_1}$ hold?

Problem

Under which conditions on \mathbb{P} does ub- $FA_{\mathbb{P},\omega_1} \implies FA_{\mathbb{P},\omega_1}$ hold?

Observation

For any σ -distributive forcing \mathbb{P} , ub-FA_{P, ω_1} \implies FA_{P, ω_1}.

Problem

Under which conditions on \mathbb{P} does $ub-FA_{\mathbb{P},\omega_1} \implies FA_{\mathbb{P},\omega_1}$ hold?

Observation

For any σ -distributive forcing \mathbb{P} , ub-FA_{P, ω_1} \implies FA_{P, ω_1}.

An application of the previous theorem:

Corollary

If $\mathbb P$ is a complete Boolean algebra that does not add reals, then

$$(\forall q \in \mathbb{P} \text{ ub-FA}_{\mathbb{P}_q,\omega_1}) \Longrightarrow \overset{\mathsf{BFA}_{\mathbb{P},\omega_1}^{\omega_1}}{\operatorname{\mathsf{BFA}}_{\mathbb{P},\omega_1}^{\omega_1}}$$

Can this be extended to (ω, λ) -distributive forcings?

If \mathbb{P} adds reals, then the implication $ub-FA_{\mathbb{P},\omega_1} \implies FA_{\mathbb{P},\omega_1}$ may or may not hold:

ub-FA_{P, ω_1} holds for Cohen forcing and in fact for all σ -centred forcings. But FA_{Cohen, ω_1} implies \neg CH.

If \mathbb{P} adds reals, then the implication $ub-FA_{\mathbb{P},\omega_1} \implies FA_{\mathbb{P},\omega_1}$ may or may not hold:

ub-FA_{P, ω_1} holds for Cohen forcing and in fact for all σ -centred forcings. But FA_{Cohen, ω_1} implies \neg CH.

Proposition

Let ${\mathbb Q}$ be random forcing. The following are equivalent:

- 1. $FA_{\mathbb{Q},\omega_1}$
- 2. ub-FA_{Q,ω1}
- 3. 2^{ω} is not the union of ω_1 many null sets

If \mathbb{P} adds reals, then the implication $ub-FA_{\mathbb{P},\omega_1} \implies FA_{\mathbb{P},\omega_1}$ may or may not hold:

ub-FA_{P, ω_1} holds for Cohen forcing and in fact for all σ -centred forcings. But FA_{Cohen, ω_1} implies \neg CH.

Proposition

Let ${\mathbb Q}$ be random forcing. The following are equivalent:

- 1. $FA_{\mathbb{Q},\omega_1}$
- 2. ub-FA_{Q,ω1}
- 3. 2^{ω} is not the union of ω_1 many null sets

We don't know if ub-FA_{\mathbb{P},κ} always implies stat-FA_{\mathbb{P},κ}.

Lemma

If \mathbb{P} is σ -distributive, then stat- $N_{\mathbb{P},\omega_1}$ implies $FA^+_{\omega_1}(\mathbb{P})$.

Theorem (Foreman, Magidor, Shelah 1988) $FA^+_{\omega_1}(\sigma\text{-closed}) \Rightarrow \text{stationary reflection for } [\lambda]^{\omega} \text{ for all } \lambda \ge \omega_2.$

This has very strong consistency.

Theorem (Sakai 2014)

 $FA^+_{\omega_1}(Add(\omega_1, 1))$ is nontrivial.

Strong forcing axioms are often stated via weak interpretations

$$\sigma^{(g)} = \{ \alpha < \kappa \mid \exists p \in g \ p \Vdash \alpha \in \sigma \}$$

of names σ for subsets of κ .

In the context of FA_{κ} , one does not need to distinguish between these two kinds of interpretations.

Lemma

The following are equivalent:

- 1. $FA_{\mathbb{P},\kappa}$
- 2. For every rank 1 \mathbb{P} -name σ for a subset of κ , there is a filter g on \mathbb{P} with $\sigma^{(g)} = \sigma^g$.

- The original definition of PFA⁺ combines PFA with the name principle stat-BN¹ for 1-bounded names.
- (The latter is equivalent to stat-N for weak interpretations.)
- Is stat-BN¹ alone nontrivial?

The next results shows that stat- $BN_{\mathbb{P},\omega_1}^1$ is nontrivial.

Proposition

Let $\kappa = 2^{\aleph_0}$ and assume that non(null) = 2^{\aleph_0} . Then stat-BN¹_{P, κ} fails for random forcing P. In particular, CH implies that stat-BN¹_{P, ω_1} fails.

Proposition

Assume \diamond_{ω_1} . Then stat-BN¹_{T,\omega_1} fails for any Suslin tree T.

Lemma (with Hamkins)

Suppose $\lambda < \kappa$ and \mathbb{P} is well-met. If stat- $BN^{\lambda}_{\mathbb{P},\kappa}$ fails, then there are densely many conditions $p \in \mathbb{P}$ such that stat- $BN^{1}_{\mathbb{P}_{p},\kappa}$ fails, where $\mathbb{P}_{p} := \{q \in \mathbb{P} : q \leq p\}.$

Fuchs and Minden (2018) show assuming CH: the bounded subcomplete forcing axiom BSCFA is equivalent to preservation of $(\omega_1, \leq \omega_1)$ -Aronszajn trees *T*. The latter is the 1-bounded name principle for statements of the form " σ is an ω_1 -branch in *T*", where *T* is as above.

Bagaria's result has been extended by Fuchs (2021). Fuchs introduced $\Sigma_1^1(\kappa, \lambda)$ -absoluteness for cardinals $\lambda \ge \kappa$ and proved it is equivalent to $\text{BFA}_{\kappa}^{\lambda}$. Can this be derived from our results? Can we separate ub-FA_{ω_1} from stat-FA_{ω_1}? Can ub-FA_{ω_1} be nontrivial but not imply FA_{ω_1}? Which of these hold for Baumgartner's forcing to add a club in ω_1 with finite conditions?

BPFA⁺ has only been formulated as a generic absoluteness principle by artificially adding a predicate for the nonstationary ideal.

Can one formulate BPFA⁺ as a generic absoluteness or name principle for a logic beyond first order?