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Motivation: Martin’s axiom, PFA

MAω1 , Martin’s axiom at ω1 (independently Martin, Kunen,
Rowbottom, Tennenbaum 1970) was introduced to axiomatise
models obtained by iterated c.c.c. forcing constructions.

• It solves problems about properties of null sets, the size
of 2ℵ0 and others.

PFA, the proper forcing axiom, was introduced in the 1970s by
Shelah.

• Baumgartner used it to settle many questions leǒt open by
MAω1 . For instance, he showed that any two ℵ1-dense sets
of reals are isomorphic. Todorčević showed that □ω1 fails.
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Motivation: Strong forcing axioms

Baumgartner (1984) introduced stronger forcing axioms MA+ω1
and PFA+. (His terminology was slightly different.)
He used it to prove stationary reflection.

Theorem (Baumgartner 1984)
Suppose that PFA+ holds and κ > ω1 is regular. If S ⊆ κ is
stationary in cofinality ω, then S ∩ α is stationary in α for some
α < κ of uncountable cofinality.
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Forcing axioms

Definition
Suppose that P is a forcing and κ is an uncountable cardinal.
The forcing axiom FAP,κ says:

Whenever D⃗ = ⟨Dα | α < κ⟩ is a sequence of predense
subsets of P, there is a filter g on P such that g∩Dα ̸= ∅
for all α < κ.

Thus MAω1 = FAc.c.c.,ω1 and PFA = FAproper,ω1 .
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Strong forcing axioms

Definition
The forcing axiom FA+P,κ says:

Suppose D⃗ = ⟨Dα : α < κ⟩ is a sequence of dense
subsets of P and σ is a nice name for a subset of κ
such that ⊩P “σ is stationary”. Then there is a filter g
such that
1. For all α, g ∩ Dα ̸= ∅; and
2. σg is stationary.
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Strong forcing axioms: Some known results

In many cases, the + part makes the axioms strictly stronger:

• MAω1 ⇒ MA+ω1 (Baumgartner 1984, unpublished)
• FAσ−closed ̸⇒ FA+σ−closed (Baumgartner 1984)
• PFA ̸⇒ PFA+ (Beaudoin 1987, Magidor 1987) via the failure
of stationary reflection

• MM ̸⇒ PFA+ (Shelah 1987)
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Name principles: key definition I

The second part of the definition of MA+ω1 and PFA+ is a special
case of a class of name principles. The most basic one is
defined as follows:

Definition
Suppose that κ is an uncountable cardinal. The name principle
NP,κ says:

“Whenever σ is a nice name for a subset of κ and A is
a subset of κ such that ⊩P σ = Ǎ, then there is a filter
g ∈ V such that σg = A.”
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Name principles: key definition II

One can replace the formula “x = Ǎ” in the previous definition
by any other formula φ(x) and thus define φ-NP,κ.

Definition
Suppose that κ is an uncountable cardinal. The simultaneous
Σ0-name principle Σ

(sim)
0 -NP,κ says:

“Whenever σ0, . . . , σn are nice names for subsets of κ,
there is a filter g in V such that φ(σg

0 , . . . , σ
g
n) holds for

every Σ0-formula φ such that ⊩P φ(σ0, . . . , σn).”
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Example
FAP,ω1 implies that P does not force that any given stationary
subset S of ω1 is destroyed. Why does this follow from the
Σ0-name principle?

Towards a contradiction, suppose there is a name τ for a club
with ⊩P τ ∩ S = ∅. By the Σ0-name principle, there is a filter
g ∈ V such that τg is club and τg ∩ S = ∅. But the existence of
τg contradicts the assumption that S is stationary.
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The correspondence, simplified

Theorem
Suppose that P is a forcing and κ is an uncountable cardinal.
Then the following statements are equivalent:

1. FAP,κ
2. The name principle NP,κ for the formula σ = κ, where σ is

any nice name for a subset of κ.
3. The simultaneous name principle Σ

(sim)
0 -NP,κ for all

first-order formulas over the structure (κ,∈, σ), where σ is
any nice name for a subset of κ.

9



The correspondence, simplified

Theorem
Suppose that P is a forcing and κ is an uncountable cardinal.
Then the following statements are equivalent:

1. FAP,κ
2. The name principle NP,κ for the formula σ = κ, where σ is

any nice name for a subset of κ.
3. The simultaneous name principle Σ

(sim)
0 -NP,κ for all

first-order formulas over the structure (κ,∈, σ), where σ is
any nice name for a subset of κ.

9



A proof sketch

Lemma
FAP,ω1 ⇐⇒ NP,ω1 .

Proof.
⇐: Let ⟨Dα | α < ω1⟩ be a sequence of predense sets in P. Let

σ = {⟨α̌,p⟩ : α < ω1, p ∈ Dα}

Then ⊩P σ = ω1.
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A proof sketch

Lemma
FAP,ω1 ⇐⇒ NP,ω1 .

Proof.
⇒: Suppose σ is a nice name for a subset of ω1 and ⊩P σ = Ǎ.

We want a filter g with σg = A. Note that σg ⊆ A holds for any
filter g on P, since σ is a nice name.

For each α ∈ A,

Dα = {p ∈ P : ⟨α̌,p⟩ ∈ σ}

is predense since ⊩P σ = Ǎ.

Let g meet Dα for all α ∈ A. Then for all α ∈ A, α = α̌g ∈ σg.
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A proof sketch

Lemma
FAP,ω1 ⇐⇒ Σ

(sim)
0 -NP,κ.

Proof.
⇐: By the previous lemma, since NP,κ follows from Σ

(sim)
0 -NP,κ

as a special case for the formula σ = Ǎ.

⇒: By induction on formulas as described below.
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Hierarchies of Names

Definition
A name σ has (name) rank α if either

1. α = 0 and σ = x̌ for some x, or
2. α > 0 is least such that every name in σ has rank <α.

Definition
A name σ is locally κ-small if there are at most κ many names
τ such that for some p ∈ P, ⟨τ,p⟩ ∈ σ.

σ is κ-small if it has rank 0, or it is locally κ-small and all the
names it contains are κ-small.

Rank 1 names for subsets of κ are always small.
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Definition
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Name principles for arbitrary ranks

Suppose that α ∈ Ord ∪ {∞} and X is a set of size ≤κ.

Definition
The name principle NP,κ(α) states:
If σ is a κ-small name of rank ≤ α and A ∈ Hκ+ ∩ Pα(X) is such
that P ⊩ σ = Ǎ, then there is a filter g ∈ V with σg = A.

Note: The requirement A ∈ Hκ+ is necessary, since for some P
there are ω-bounded rank 2 names σ ∈ Hω1 for P(ω)V.

Definition
The first order name principle Σ

(sim)
0 -NP,κ(α) states:

If σ1, . . . , σn are κ-small names of rank ≤α and φ(v1, . . . , vn) is
any Σ0 formula such that P ⊩ φ(σ⃗), then there is a filter g ∈ V
such that V ⊨ φ(σ⃗g).
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The correspondence

Theorem

Let P be a forcing and let κ be a cardinal. The following
implications hold, given the assumptions noted at the arrows:

1.

FAκ

��

NP,κ(∞) oo

44

Σ
(sim)
0 -NP,κ(∞)

A similar result holds for the λ-bounded versions, where λ ≥ κ

is a cardinal.
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The correspondence

Theorem

Let P be a forcing and let κ be a cardinal. The following
implications hold, given the assumptions noted at the arrows:

2. For any ordinal α > 0, and any transitive set X of size at
most κ:

FAκ

��

NP,X,κ(α) oo

|P<α(X)|≥κ
44

Σ
(sim)
0 -NP,X,κ(α)

A similar result holds for the λ-bounded versions, where λ ≥ κ

is a cardinal.
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A proof sketch

Lemma
Let σ⃗ be a finite tuple of κ-small names and let φ be Σ0. Then
there is a collection D = Dφ(σ⃗) of at most κ many dense sets,
such that if g is any filter and

1. g meets every element of D
2. g contains some p such that p ⊩ φ(σ⃗)

then V ⊨ φ(σ⃗g).

We prove the lemma for the following cases in turn:

1. φ is of the form σ = Ǎ
2. φ is of the form τ = σ

3. φ is of the form τ ∈ σ

4. φ is a negation of one of the above three forms
5. Arbitrary φ
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φ is of the form σ = Ǎ

Proof (σ = Ǎ case, sketch).
Induction on the rank of σ.

Write the elements of σ as τγ : γ < κ.

For B ∈ A, define a dense set DB to ensure that B ends up in σg:

DB =

{
p ∈ P : p ⊩ σ ̸= Ǎ ∨ ∃γ

(
p ⊩+ τγ ∈ σ ∧ p ⊩ τγ = B̌

)}

For γ < κ, define a dense set Eγ in a similar way. Let

Dσ=Ǎ = {DB : B ∈ A} ∪ {Eγ : γ < κ} ∪
∪

B∈A,γ<κ

Dτγ=B̌

16



Applications I

We can characterize PFA as follows:

PFA⇐⇒ Σ
(sim)
0 -Nproper,ω1 ⇐⇒ Nproper,ω1 .

In other words, rank 1 names for ω1 can be interpreted
correctly.

PFA⇐⇒ Σ
(sim)
0 -Nproper,ω,ω1(2) ⇐⇒ Nproper,ω,ω1(2).

So rank 2 names for sets of reals can be interpreted correctly.
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Previous results on generic absoluteness

Theorem (Bagaria 2000)
Let P be a partial ordering and κ an infinite cardinal of
uncountable cofinality. Then the following are equivalent:

1. BFAκ(P)
2. Σ1(Hκ+)-absoluteness for P.

This builds on a previous result of Bagaria (1997).

Before, Fuchino had characterised Martin’s axiom by the
existence of embeddings (1992).
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Applications II

Theorem
Suppose that κ is an uncountable cardinal and P is a forcing.
Then conditions 1, 2, 3 are equivalent:

1. BFAP,κ

2. Σ(sim)
0 -BNP,κ

3. ⊩P V ≺Σ1
1(κ)

V[Ġ]

If cof(κ) > ω, or cof(κ) = ω and there exists no inner model
with a Woodin cardinal, then these are also equivalent to 4:

4. ⊩P HV
κ+ ≺Σ1 H

V[Ġ]
κ+

If cof(κ) = ω and 2<κ = κ, then these are equivalent to 5:

5. 1P forces that there are no new bounded subset of κ in V[Ġ]
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Applications III

Theorem
The following statements are equivalent for Boolean
ultrapower embeddings jU : V → V̌U:

1. FAP,κ

2. For any transitive set M ∈ Hκ+ and for every κ-small
M-name σ, there is an ultrafilter U ∈ V on P such that

jU↾M : M → jU(M)∈U

is an elementary embedding from (M,∈, σU) to
(jU(M)∈U ,∈U, [σ]U).
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New forcing axioms

We began an analysis of various name principles for notions of
largeness for subsets of κ, e.g. being unbounded or stationary.

To this end, it is useful to study new forcing axioms such as:

Definition
Let κ be a cardinal. The unbounded forcing axiom ub-FAP,κ
says:

“If ⟨Dγ : γ < κ⟩ is a sequence of κ many predense sets,
then there is a filter g ∈ V which meets unboundedly
many Dγ .”

21



New forcing axioms

We began an analysis of various name principles for notions of
largeness for subsets of κ, e.g. being unbounded or stationary.

To this end, it is useful to study new forcing axioms such as:

Definition
Let κ be a cardinal. The unbounded forcing axiom ub-FAP,κ
says:

“If ⟨Dγ : γ < κ⟩ is a sequence of κ many predense sets,
then there is a filter g ∈ V which meets unboundedly
many Dγ .”

21



Implications

Nκ
oo //

OO

��

club-NκOO

��

___ stat-Nκ
//

��

ub-NκOO

��

FAκ oo // club-FAκ // stat-FAκ // ub-FAκ

Solid arrows: non-reversible implications

Dotted arrows: implications whose converse remains open

Dashed lines: no implication is provable
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New forcing axioms

Problem
Under which conditions on P does ub-FAP,ω1 =⇒ FAP,ω1 hold?

Observation
For any σ-distributive forcing P, ub-FAP,ω1 =⇒ FAP,ω1 .

An application of the previous theorem:

Corollary
If P is a complete Boolean algebra that does not add reals,
then

(∀q ∈ P ub-FAPq,ω1) =⇒ BFAω1P,ω1 .

Can this be extended to (ω, λ)-distributive forcings?
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New forcing axioms

If P adds reals, then the implication ub-FAP,ω1 =⇒ FAP,ω1 may
or may not hold:

ub-FAP,ω1 holds for Cohen forcing and in fact for all σ-centred
forcings. But FACohen,ω1 implies ¬CH.

Proposition
Let Q be random forcing. The following are equivalent:

1. FAQ,ω1

2. ub-FAQ,ω1

3. 2ω is not the union of ω1 many null sets

We don’t know if ub-FAP,κ always implies stat-FAP,κ.
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Stationary name principles

Lemma
If P is σ-distributive, then stat-NP,ω1 implies FA+ω1(P).

Theorem (Foreman, Magidor, Shelah 1988)
FA+ω1(σ-closed) ⇒ stationary reflection for [λ]ω for all λ ≥ ω2.

This has very strong consistency.

Theorem (Sakai 2014)
FA+ω1(Add(ω1, 1)) is nontrivial.
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Weak interpretations

Strong forcing axioms are oǒten stated via weak interpretations

σ(g) = {α < κ | ∃p ∈ g p ⊩ α ∈ σ}

of names σ for subsets of κ.

In the context of FAκ, one does not need to distinguish
between these two kinds of interpretations.

Lemma
The following are equivalent:

1. FAP,κ
2. For every rank 1 P-name σ for a subset of κ, there is a filter

g on P with σ(g) = σg.
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Stationary name principles

The original definition of PFA+ combines PFA with the name
principle stat-BN1 for 1-bounded names.

(The latter is equivalent to stat-N for weak interpretations.)

Is stat-BN1 alone nontrivial?
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Stationary name principles

The next results shows that stat-BN1P,ω1 is nontrivial.

Proposition
Let κ = 2ℵ0 and assume that non(null) = 2ℵ0 . Then stat-BN1P,κ
fails for random forcing P. In particular, CH implies that
stat-BN1P,ω1 fails.

Proposition
Assume ♢ω1 . Then stat-BN1T,ω1 fails for any Suslin tree T.
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Stationary name principles

Lemma (with Hamkins)
Suppose λ < κ and P is well-met. If stat-BNλ

P,κ fails, then there
are densely many conditions p ∈ P such that stat-BN1Pp,κ fails,
where Pp := {q ∈ P : q ≤ p}.
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Connections to other work

Fuchs and Minden (2018) show assuming CH: the bounded
subcomplete forcing axiom BSCFA is equivalent to preservation
of (ω1,≤ω1)-Aronszajn trees T.
The latter is the 1-bounded name principle for statements of
the form “σ is an ω1-branch in T”, where T is as above.

Bagaria’s result has been extended by Fuchs (2021).
Fuchs introduced Σ11(κ, λ)-absoluteness for cardinals λ ≥ κ

and proved it is equivalent to BFAλκ. Can this be derived from
our results?
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Future directions

Can we separate ub-FAω1 from stat-FAω1?
Can ub-FAω1 be nontrivial but not imply FAω1?
Which of these hold for Baumgartner’s forcing to add a club in
ω1 with finite conditions?

BPFA+ has only been formulated as a generic absoluteness
principle by artificially adding a predicate for the
nonstationary ideal.
Can one formulate BPFA+ as a generic absoluteness or name
principle for a logic beyond first order?
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