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Enumerations of Π1
1 sets

I A Σ1
1 set is a projection p[T ] of a closed subset [T ] of ωω × ωω,

where T is a computable tree on ω × ω.

Equivalently, it is defined by a Σ1
1-formula ∃y ϕ(x, y), where ϕ is

Σ0.

I A Π1
1 set is a complement of a Σ1

1 set.

I A Σ1
2 set is a projection of a Π1

1 set, etc.

There is a strong parallel between c.e. sets and Π1
1 sets.

Reduction property: If A, B are Π1
1 sets, then there are disjoint Π1

1 sets
A′ ⊆ A and B′ ⊆ B with A′ ∪B′ = A ∪B.

This is explained by the fact that any Π1
1 set can be enumerated as a

c.e. set, but in ordinal stages.
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Enumerations of Π1
1 sets

A wellorder is a linear order without infinite decreasing sequences.

Example

Let WO denote the Π1
1 set of wellorders on ω.

Let WO≤α denote the Borel subset of wellorders of order type ≤α.

WO can be enumerated in ω1 stages by checking if an input has order
type ω, ω + 1 etc.

Formally, one inputs a real R into a machine and runs a computation
with ordinal stages. (This is explained on a later slide.)

All wellorders R ∈WO≤α are found by a fixed countable stage.
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Enumerations of Π1
1 sets

A set is Π1
1 iff it can be enumerated by an algorithm p such that p(x)

halts before ωck,x
1 or diverges (Spector).

A set is Σ1
2 iff it can be enumerated by an unrestricted algorithm.

These representations play a major role, from classical results about Π1
1

and Σ1
2 sets to numerous recent results.

For an introduction, see:

I Greg Hjorth

Vienna notes on effective descriptive set theory and admissible sets
http://www.math.uni-bonn.de/ag/logik/events/young-set-theory-
2010/Hjorth.pdf

I Chi Tat Chong and Liang Yu

Recursion Theory: Computational Aspects of Definability

De Gruyter Series in Logic and Its Applications 8, 2015
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Ranks

A rank is a notion that abstracts the halting times of infinite processes.

Consider the relation x ≤ y ⇔ p(x) halts before or at the same time as
p(y).

A Π1
1-rank on a Π1

1 set A is a prewellorder on A such that

I comparison is both Π1
1 and Σ1

1 on A, and

I A is downwards closed in both relations.

Thus A is written as an increasing union of Borel subsets.

Ranks also arise in other ways, for instance from transfinite iterations
of derivation processes such as the Cantor-Bendixson derivative.

Most of the following results hold for both enumerations and ranks.
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What was known

Fact

TFAE for a Π1
1 set A:

I A is Borel.

I Every Π1
1-rank on A is countable.

I A admits a countable Π1
1-rank.

The first implication follows from the Kunen-Martin theorem: Every
wellfounded Σ1

1 relation has countable rank.

Problem

What is the length of countable enumerations of Π1
1 sets?

How long can countable Π1
1-ranks be?
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Both implications fail for Σ1
2 sets.

Problem

What is the length of countable enumerations of Σ1
2 sets?

How long can countable Σ1
2-ranks be?

Problem

Which Σ1
2 sets admit a countable Σ1

2-rank?
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What we showed

τ is defined as the supremum of Σ2-definable ordinals in LωV1
.

Theorem (Welch, Carl, S.)

Each of the following sets of ordinals has supremum τ :

1. a. Lengths of countable enumerations of Π1
1 sets

b. Lengths of countable Π1
1 ranks

c. Countable ranks of wellfounded Π1
1 relations.

2. a. Lengths of countable enumerations of Σ1
2 sets

b. Lengths of countable Σ1
2 ranks

c. Countable ranks of wellfounded Σ1
2 relations.

3. Borel ranks of Π1
1 Borel sets.

The value in 3. was computed by Kechris, Marker and Sami (JSL
1989) as γ1

2 . Thus γ1
2 = τ .
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Lengths of ranks
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L

The L-hierarchy is a transfinite extension of the arithmetical hierarchy.

I L0 = ∅
I Lα+1 = {X ⊆ Lα | ∃ϕ(., u) X = {x ∈ Lα | (Lα,∈) |= ϕ(x, u)}}
I Lλ =

⋃
α<λ Lα for limits λ

I L =
⋃
α∈Ord Lα

L equals the class of sets written by a transfinite process (Koepke).

The fine structure of L was analysed by Jensen.
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σ

A Σ1-formula is of the form ∃x ϕ(x, y), where ϕ contains only bounded
quantifiers.

As L grows, more Σ1-statements become true.

α is called Σ1-definable if it is unique with ϕ(α), for some Σ1-formula
ϕ.

Definition

σ is defined as the supremum of ordinals which are Σ1-definable in LωV1
.

Fact

1. σ is least with Lσ ≺Σ1 L.

2. σ is least such that Lσ contains all Π1
1-singletons.

3. σ equals δ1
2, the supremum lengths of ∆1

2-wellorders on ω.
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τ

Definition
τ is defined as the supremum of ordinals which are Σ2-definable in LωV

1
.

Lemma (Welch, Carl, S.)

τ equals the supremum of ordinals which are Π1-definable in LωV
1

.
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τ

ωV1 = ωL1

ωck1

σ = δ12

τ

ωL1 = ωV1

ωL2

ωV1 = ωL2

ωck1

σ = δ12

ωL1

τ

ωL2 = ωV1

ωV1 > ωL2

ωck1

σ = δ12

ωL1

ωL2

τ

ωV1
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τ

Let τ∗ be least such that Lτ∗ and LωV1
agree on Σ2-truth. Let τ∗ be

least with Lτ∗ ≺Σ2 LωV1
.

Then τ∗ ≤ τ ≤ τ∗.

Lemma (Welch, Carl, S.)

1. If ωL1 = ωV1 , then τ∗ = τ = τ∗.

2. If ωL1 < ωV1 , then τ∗ < ωL1 < τ < τ∗.
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Lengths of ranks

Theorem (Welch, Carl, S.)

The supremum of lengths of countable ranks in the following classes
equals τ :

1. Π1
1-ranks

2. Σ1
2-ranks
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Lower bound for Π1
1-ranks

For x ∈WO, let αx denote the ordinal coded by x.

We call an ordinal β an α-index if β > α and some Σ
Lω1
1 fact with

parameters in α ∪ {α} first becomes true in Lβ.

σα is defined as the supremum of α-indices.

Suppose that ν is Π
Lω1
1 -definable by ϕ(u).

We will define a Π1
1 subset A of WO. A will be bounded in WO, since

for all x ∈ A, αx will be a ν̄-index for some ν̄ ≤ ν and hence αx < σν .

For each x ∈WO, let νx denote the least ordinal ν̄ < αx with
Lαx |= ϕ(ν̄), if this exists. Let

A = {x ∈WO | νx exists and αx is a νx-index}.

Clearly A is Π1
1.
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Lower bound for Π1
1-ranks

One can show that A admits a countable Π1
1-rank, and any Π1

1-rank on
A has length at least σν .

Next slide: Lower bound for enumerations
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Lower bound for Σ1
2-enumerations

Lemma (Welch, Carl, S.)

Any Σ1
2-enumeration of A has length at least σν .

Proof.

I A is unbounded in σν by the definition of A.

Suppose that for some γ < σν , there is an algorithm p that enumerates
A within time γ.

Let g be Col(ω, γ)-generic over Lσν and xg ∈ Lσν [g] a real coding g.

A is Σ1
1(xg), since x ∈ A holds if and only if there is a halting run p(x)

of length at most γ.

I A is bounded below ω
ck,xg
1 by the effective boundedness lemma.

Since σν is a limit of admissibles and g is set generic over Lσν , σν is a
limit of xg-admissibles. Hence ωck,y

1 < σν .
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Upper bound for wellfounded Σ1
2-relations

Lemma (Welch, Carl, S.)

For any wellfounded Σ1
2-relation R of countable rank, rank(R) < τ .

This is proved via:

Lemma (Welch, Carl, S.)

Suppose that R is a wellfounded Σ1
2 relation and M is a Σ1-correct

admissible set.

If rank(x) = α < ωM1 , then there is some x′ ∈M with rank(x′) = α.

This is applied to a Col(ω, γ)-generic extension of L, where
rank(R) = γ.
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Sets with countable ranks
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Σ1
2-ranks

The implications between Borel and admits a countable rank for Π1
1

sets break at the level of Σ1
2.

The simplest Π1
2 sets: Π1

2-singletons.

Theorem (Silver)

If there exists a Ramsey cardinal, then 0# is a Π1
2-singleton that is not

in L.

Theorem (Jensen)

By forcing over L, one can add a Π1
2-singleton that is not in L.

The complements of these singletons do not admit countable Σ1
2-ranks.
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Σ1
2-ranks

Theorem (Welch, Carl, S.)

The following conditions are equivalent for any Π1
2-singleton x:

a. x ∈ L.

b. x is covered by a countable Σ1
2 set.

c. x is covered by a countable ∆1
2 set.

d. The complement of {x} admits a countable Σ1
2-rank.

This result can be extended to countable Π1
2 sets.
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Σ1
2-ranks

Proof.

a⇒ b:
Suppose that x is defined by a Π1-formula ϕ(u).

Let A denote the complement of {x}.

Let B denote the set of y such that for some countable α, Lα |= “y is
defined by ϕ(u)”.

B is a Σ1
2-set containing x. Moreover, B is countable, since it is

contained in Lα, where α is least with Lα |= ∀y <L x ¬ϕ(y).

Note that B is in fact ∆1
2:

y /∈ B iff there exists a countable β with x ∈ Lβ and either

i. Lβ |= ¬ϕ(x), or

ii. Lβ |= ϕ(x) and for all α ≤ β with x ∈ Lα, Lα |= ∃y 6= x ϕ(y).
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Borel ranks
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∆1
1 sets

An ordinal is called computable if it is coded by a computable real. ωck1 is the
supremum of computable ordinals.

Fact

The supremum of Borel ranks of ∆1
1 sets is ωck1 .

This uses an effective version of Lusin’s separation theorem: Any two disjoint
Σ1

1 sets are separated by a hyperarithmetic set, i.e. a Borel set with a
computable code.

Lωck
1

is the least admissible set. An admissible set is a transitive model of KP:
Axioms of set theory with only Σ1-collection and ∆0-separation.

Theorem (Louveau TAMS 1980)

Given a ∆1
1 set that is also Σ0

α, there is a Σ0
α-code in Lωck

1
.

Philipp Schlicht 25 / 35



Π1
1 Borel sets

Assuming Π1
1-determinacy, all truly Π1

1 (i.e. non-Borel) sets are Wadge
equivalent. It thus remains to understand Π1

1 Borel sets.

The supremum of Borel ranks of Π1
1 Borel sets was calculated by Kechris,

Marker and Sami as γ12 (JSL 1989).

Proposition (Welch, Carl, S.)

The supremum of Borel ranks of Π1
1 Borel sets equals τ .

Thus γ12 = τ .
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The lower bound

Lemma (Welch, Carl, S.)

For any α < τ , there is a Π1
1 Borel set A of Borel rank at least α.

Proof.
Let αx denote the order type of x ∈WO.

Suppose that δ > ωα is a Π1-singleton defined by ϕ(x). Let

A = {(x, y) ∈WO2 | αy is least with Lαy
|= “ϕ defines αx”} ∈ Π1

1.

Let η > δ be least with Lη |= “ϕ defines δ”. Note that for any (x, y) ∈ A, we
have αx ≤ δ and αy ≤ η.

A is a countable union of Borel sets of the form WOµ ×WOν and thus Borel.

Plug in η on the right to obtain the slice WOδ. But WOδ has Borel rank at
least α (Stern).

The Borel ranks of Σ1
2 Borel sets are not bounded by τ .
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∆1
2 Borel sets

A Borel code is a subset of ω that codes a tree which describes the way the
Borel set is built up from basic open sets.

An ∞-Borel code is a set of ordinals defined similarly, but allowing
wellordered unions and intersections.

Do all ∆1
2 Borel sets have ∞-Borel codes in LωV

1
?

A set is absolutely ∆1
2 if it has a uniform ∆1

2-definition in generic extensions.

Theorem
Suppose that either

a. ωV1 is inaccessible in L (Stern), or

b. V is a generic extension of L by proper forcing (Welch, Carl, S.).

Then any absolutely ∆1
2 Borel set has an ∞-Borel code of the same rank in Lτ .

There is no such result for Σ1
2 sets, since Π1

2 singletons can exist outside of L.
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∆1
2 Borel sets

Proving this result in ZFC would simultaneously generalise:

I The above result of Kechris, Marker and Sami

I The Mansfield-Solovay theorem: Countable ∆1
2 sets are contained

in L

I Stern’s theorem on ∆1
2 Borel sets that corresponds to the first case.

I Shoenfield absoluteness
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Appendix: infinite time algorithms
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Ittm’s

We discuss infinite time Turing machines (ittm’s, Hamkins, Kidder 2000);
unrestricted machines work similarly, but have an ordinal tape.

An ittm is a Turing machine with three tapes whose cells are indexed by
natural numbers:

The input tape

The output tape

The working tape

0 0 0 0 0 0 0 0 0 0 0 0 0 ...Input

0 1 0 0 1 0 1 1 0 0 1 0 1 ...Work

1 1 1 1 1 0 0 0 0 0 0 0 0 ...Output

↑

State:
i < k
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Ittm’s

It behaves like a standard Turing machine at successor steps of a computation.
At limit steps of computation:

The head goes back to the first cell.

The machine goes into a limit state.

The value of each cell equals the lim inf of the values at previous stages
of computation.

0 0 0 0 0 0 0 0 0 0 0 0 0 ...Input

0 1 0 0 1 0 1 1 0 0 1 0 1 ...Work

1 1 1 1 1 0 0 0 0 0 0 0 0 ...Output

↑

State:
limit
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Further results for ittm’s

Theorem (Welch, Carl, S.)

There is an open ittm-decidable set A that is not ittm-semidecidable in
countable time.

Theorem (Welch, Carl, S.)

The suprema of ittm-semidecision times for the following sets equal σ:

1. Singletons

2. Complements of singletons.
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Some open problems

Question

Which Σ1
2 sets admit countable Σ1

2-ranks?

The above results only answer this if either the set or its complement is
countable. This remaining cases could be related to the next question:

Question

Does every ∆1
2 Borel set have an ∞-Borel code in LωV1

?

Combined with Stern’s results, our partial result covers many
interesting cases. But a general result seems out of reach. In
particular, I was not able to adapt Louveau’s method (TAMS 1980).
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