Structural results about projective sets

Philipp Schlicht, University of Vienna

Logic Seminar, National University of Singapore 11 November 2020

This project received funding from the EU's Horizon 2020, grant 794020

Enumerations of Π_1^1 sets

- A Σ_1^1 set is a projection p[T] of a closed subset [T] of $\omega^{\omega} \times \omega^{\omega}$, where T is a computable tree on $\omega \times \omega$. Equivalently, it is defined by a Σ_1^1 -formula $\exists y \ \varphi(x, y)$, where φ is Σ_0 .
- A Π_1^1 set is a complement of a Σ_1^1 set.
- A Σ_2^1 set is a projection of a Π_1^1 set, etc.

There is a strong parallel between c.e. sets and Π_1^1 sets.

Reduction property: If A, B are Π_1^1 sets, then there are disjoint Π_1^1 sets $A' \subseteq A$ and $B' \subseteq B$ with $A' \cup B' = A \cup B$.

This is explained by the fact that any Π_1^1 set can be enumerated as a c.e. set, but in ordinal stages.

Enumerations of Π_1^1 sets

A wellorder is a linear order without infinite decreasing sequences.

Example

Let WO denote the Π_1^1 set of wellorders on ω . Let WO_{$\leq \alpha$} denote the Borel subset of wellorders of order type $\leq \alpha$.

WO can be enumerated in ω_1 stages by checking if an input has order type ω , $\omega + 1$ etc.

Formally, one inputs a real R into a machine and runs a computation with ordinal stages. (This is explained on a later slide.)

All wellorders $R \in WO_{\leq \alpha}$ are found by a fixed countable stage.

Enumerations of Π_1^1 sets

A set is Π_1^1 iff it can be enumerated by an algorithm p such that p(x) halts before $\omega_1^{\operatorname{ck},x}$ or diverges (Spector).

A set is Σ_2^1 iff it can be enumerated by an unrestricted algorithm.

These representations play a major role, from classical results about Π_1^1 and Σ_2^1 sets to numerous recent results.

For an introduction, see:

▶ Greg Hjorth

Vienna notes on effective descriptive set theory and admissible sets http://www.math.uni-bonn.de/ag/logik/events/young-set-theory-2010/Hjorth.pdf

 Chi Tat Chong and Liang Yu Recursion Theory: Computational Aspects of Definability De Gruyter Series in Logic and Its Applications 8, 2015

Ranks

A rank is a notion that abstracts the halting times of infinite processes.

Consider the relation $x \leq y \Leftrightarrow p(x)$ halts before or at the same time as p(y).

A Π_1^1 -rank on a Π_1^1 set A is a prewellorder on A such that

- comparison is both Π_1^1 and Σ_1^1 on A, and
- \blacktriangleright A is downwards closed in both relations.

Thus A is written as an increasing union of Borel subsets.

Ranks also arise in other ways, for instance from transfinite iterations of derivation processes such as the Cantor-Bendixson derivative.

Most of the following results hold for both enumerations and ranks.

What was known

Fact

TFAE for a Π_1^1 set A:

- \blacktriangleright A is Borel.
- Every Π_1^1 -rank on A is countable.
- A admits a countable Π_1^1 -rank.

The first implication follows from the Kunen-Martin theorem: Every wellfounded Σ_1^1 relation has countable rank.

Problem

What is the length of countable enumerations of Π_1^1 sets? How long can countable Π_1^1 -ranks be? Both implications fail for Σ_2^1 sets.

Problem

What is the length of countable enumerations of Σ_2^1 sets? How long can countable Σ_2^1 -ranks be?

Problem

Which Σ_2^1 sets admit a countable Σ_2^1 -rank?

What we showed

 τ is defined as the supremum of Σ_2 -definable ordinals in $L_{\omega_1^V}$.

Theorem (Welch, Carl, S.)

Each of the following sets of ordinals has supremum τ :

- 1. a. Lengths of countable enumerations of Π_1^1 sets
 - b. Lengths of countable Π_1^1 ranks
 - c. Countable ranks of wellfounded Π_1^1 relations.
- 2. a. Lengths of countable enumerations of Σ_2^1 sets
 - b. Lengths of countable Σ_2^1 ranks
 - c. Countable ranks of wellfounded Σ_2^1 relations.
- 3. Borel ranks of Π^1_1 Borel sets.

The value in 3. was computed by Kechris, Marker and Sami (JSL 1989) as γ_2^1 . Thus $\gamma_2^1 = \tau$.

Lengths of ranks

The L-hierarchy is a transfinite extension of the arithmetical hierarchy.

L₀ = ∅
L_{α+1} = {X ⊆ L_α | ∃φ(., u) X = {x ∈ L_α | (L_α, ∈) ⊨ φ(x, u)}}
L_λ = ⋃_{α<λ} L_α for limits λ
L = ⋃_{α∈Ord} L_α

L equals the class of sets written by a transfinite process (Koepke). The fine structure of L was analysed by Jensen. A Σ_1 -formula is of the form $\exists x \ \varphi(x, y)$, where φ contains only bounded quantifiers.

As L grows, more Σ_1 -statements become true.

 α is called Σ_1 -definable if it is unique with $\varphi(\alpha)$, for some Σ_1 -formula φ .

Definition

 σ is defined as the supremum of ordinals which are Σ_1 -definable in $L_{\omega_1^V}$.

Fact

- 1. σ is least with $L_{\sigma} \prec_{\Sigma_1} L$.
- 2. σ is least such that L_{σ} contains all Π_1^1 -singletons.
- 3. σ equals δ_2^1 , the supremum lengths of Δ_2^1 -wellorders on ω .

Definition

 τ is defined as the supremum of ordinals which are Σ_2 -definable in $L_{\omega_1^V}$.

Lemma (Welch, Carl, S.)

 τ equals the supremum of ordinals which are Π_1 -definable in $L_{\omega_1^V}$.

Philipp Schlicht

Let τ_* be least such that L_{τ_*} and $L_{\omega_1^V}$ agree on Σ_2 -truth. Let τ^* be least with $L_{\tau^*} \prec_{\Sigma_2} L_{\omega_1^V}$. Then $\tau_* \leq \tau \leq \tau^*$.

Lemma (Welch, Carl, S.)

1. If
$$\omega_1^L = \omega_1^V$$
, then $\tau_* = \tau = \tau^*$.
2. If $\omega_1^L < \omega_1^V$, then $\tau_* < \omega_1^L < \tau < \tau^*$.

Lengths of ranks

Theorem (Welch, Carl, S.)

The supremum of lengths of countable ranks in the following classes equals τ :

- 1. Π^1_1 -ranks
- 2. Σ_2^1 -ranks

Lower bound for Π_1^1 -ranks

For $x \in WO$, let α_x denote the ordinal coded by x.

We call an ordinal β an α -index if $\beta > \alpha$ and some $\Sigma_1^{L_{\omega_1}}$ fact with parameters in $\alpha \cup \{\alpha\}$ first becomes true in L_{β} .

 σ_{α} is defined as the supremum of α -indices.

Suppose that ν is $\Pi_1^{L_{\omega_1}}$ -definable by $\varphi(u)$.

We will define a Π_1^1 subset A of WO. A will be bounded in WO, since for all $x \in A$, α_x will be a $\bar{\nu}$ -index for some $\bar{\nu} \leq \nu$ and hence $\alpha_x < \sigma_{\nu}$.

For each $x \in WO$, let ν_x denote the least ordinal $\bar{\nu} < \alpha_x$ with $L_{\alpha_x} \models \varphi(\bar{\nu})$, if this exists. Let

 $A = \{x \in WO \mid \nu_x \text{ exists and } \alpha_x \text{ is a } \nu_x \text{-index}\}.$

Clearly A is Π_1^1 .

Lower bound for Π_1^1 -ranks

One can show that A admits a countable Π_1^1 -rank, and any Π_1^1 -rank on A has length at least σ_{ν} .

Next slide: Lower bound for enumerations

Lower bound for Σ_2^1 -enumerations

Lemma (Welch, Carl, S.)

Any Σ_2^1 -enumeration of A has length at least σ_{ν} .

Proof.

• A is unbounded in σ_{ν} by the definition of A.

Suppose that for some $\gamma < \sigma_{\nu}$, there is an algorithm p that enumerates A within time γ .

Let g be $\operatorname{Col}(\omega, \gamma)$ -generic over $L_{\sigma_{\nu}}$ and $x_g \in L_{\sigma_{\nu}}[g]$ a real coding g. A is $\Sigma_1^1(x_g)$, since $x \in A$ holds if and only if there is a halting run p(x) of length at most γ .

► A is bounded below $\omega_1^{\operatorname{ck}, x_g}$ by the effective boundedness lemma.

Since σ_{ν} is a limit of admissibles and g is set generic over $L_{\sigma_{\nu}}$, σ_{ν} is a limit of x_g -admissibles. Hence $\omega_1^{\operatorname{ck},y} < \sigma_{\nu}$.

Upper bound for wellfounded Σ_2^1 -relations

Lemma (Welch, Carl, S.)

For any wellfounded Σ_2^1 -relation R of countable rank, $\operatorname{rank}(R) < \tau$.

This is proved via:

Lemma (Welch, Carl, S.)

Suppose that R is a wellfounded Σ_2^1 relation and M is a Σ_1 -correct admissible set.

If rank $(x) = \alpha < \omega_1^M$, then there is some $x' \in M$ with rank $(x') = \alpha$.

This is applied to a $Col(\omega, \gamma)$ -generic extension of L, where $rank(R) = \gamma$.

Sets with countable ranks

Σ_2^1 -ranks

The implications between Borel and admits a countable rank for Π_1^1 sets break at the level of Σ_2^1 .

The simplest Π_2^1 sets: Π_2^1 -singletons.

Theorem (Silver)

If there exists a Ramsey cardinal, then $0^{\#}$ is a Π_2^1 -singleton that is not in L.

Theorem (Jensen)

By forcing over L, one can add a Π_2^1 -singleton that is not in L.

The complements of these singletons do not admit countable Σ_2^1 -ranks.

Σ_2^1 -ranks

Theorem (Welch, Carl, S.)

The following conditions are equivalent for any Π_2^1 -singleton x: a. $x \in L$.

- b. x is covered by a countable Σ_2^1 set.
- c. x is covered by a countable Δ_2^1 set.
- d. The complement of $\{x\}$ admits a countable Σ_2^1 -rank.

This result can be extended to countable Π_2^1 sets.

Σ_2^1 -ranks

Proof.

 $a \Rightarrow b$:

Suppose that x is defined by a Π_1 -formula $\varphi(u)$.

Let A denote the complement of $\{x\}$.

Let B denote the set of y such that for some countable α , $L_{\alpha} \models "y$ is defined by $\varphi(u)$ ".

B is a Σ_2^1 -set containing *x*. Moreover, *B* is countable, since it is contained in L_{α} , where α is least with $L_{\alpha} \models \forall y <_L x \neg \varphi(y)$.

Note that B is in fact Δ_2^1 :

 $y \notin B$ iff there exists a countable β with $x \in L_{\beta}$ and either

- i. $L_{\beta} \models \neg \varphi(x)$, or
- ii. $L_{\beta} \models \varphi(x)$ and for all $\alpha \leq \beta$ with $x \in L_{\alpha}$, $L_{\alpha} \models \exists y \neq x \ \varphi(y)$.

Borel ranks

Δ_1^1 sets

An ordinal is called computable if it is coded by a computable real. ω_1^{ck} is the supremum of computable ordinals.

Fact

```
The supremum of Borel ranks of \Delta_1^1 sets is \omega_1^{ck}.
```

This uses an effective version of Lusin's separation theorem: Any two disjoint Σ_1^1 sets are separated by a hyperarithmetic set, i.e. a Borel set with a computable code.

 $L_{\omega_1^{ck}}$ is the least admissible set. An admissible set is a transitive model of KP: Axioms of set theory with only Σ_1 -collection and Δ_0 -separation.

Theorem (Louveau TAMS 1980)

Given a Δ_1^1 set that is also Σ_{α}^0 , there is a Σ_{α}^0 -code in $L_{\omega_1^{ck}}$.

Π_1^1 Borel sets

Assuming Π_1^1 -determinacy, all truly Π_1^1 (i.e. non-Borel) sets are Wadge equivalent. It thus remains to understand Π_1^1 Borel sets.

The supremum of Borel ranks of Π_1^1 Borel sets was calculated by Kechris, Marker and Sami as γ_2^1 (JSL 1989).

Proposition (Welch, Carl, S.)

The supremum of Borel ranks of Π_1^1 Borel sets equals τ .

Thus $\gamma_2^1 = \tau$.

The lower bound

Lemma (Welch, Carl, S.)

For any $\alpha < \tau$, there is a Π_1^1 Borel set A of Borel rank at least α .

Proof.

Let α_x denote the order type of $x \in WO$.

Suppose that $\delta > \omega^{\alpha}$ is a Π_1 -singleton defined by $\varphi(x)$. Let

 $A = \{(x, y) \in WO^2 \mid \alpha_y \text{ is least with } L_{\alpha_y} \models "\varphi \text{ defines } \alpha_x"\} \in \Pi^1_1.$

Let $\eta > \delta$ be least with $L_{\eta} \models "\varphi$ defines δ ". Note that for any $(x, y) \in A$, we have $\alpha_x \leq \delta$ and $\alpha_y \leq \eta$.

A is a countable union of Borel sets of the form $WO_{\mu} \times WO_{\nu}$ and thus Borel. Plug in η on the right to obtain the slice WO_{δ} . But WO_{δ} has Borel rank at least α (Stern).

The Borel ranks of Σ_2^1 Borel sets are not bounded by τ .

Δ_2^1 Borel sets

A Borel code is a subset of ω that codes a tree which describes the way the Borel set is built up from basic open sets.

An ∞ -Borel code is a set of ordinals defined similarly, but allowing wellordered unions and intersections.

Do all Δ_2^1 Borel sets have ∞ -Borel codes in $L_{\omega_1^V}$?

A set is absolutely Δ_2^1 if it has a uniform Δ_2^1 -definition in generic extensions.

Theorem

Suppose that either

a. ω_1^V is inaccessible in L (Stern), or

b. V is a generic extension of L by proper forcing (Welch, Carl, S.). Then any absolutely Δ_2^1 Borel set has an ∞ -Borel code of the same rank in L_{τ} .

There is no such result for Σ_2^1 sets, since Π_2^1 singletons can exist outside of L.

Proving this result in ZFC would simultaneously generalise:

- ▶ The above result of Kechris, Marker and Sami
- ► The Mansfield-Solovay theorem: Countable Δ_2^1 sets are contained in L
- ▶ Stern's theorem on Δ_2^1 Borel sets that corresponds to the first case.
- ▶ Shoenfield absoluteness

Appendix: infinite time algorithms

Ittm's

We discuss infinite time Turing machines (ittm's, Hamkins, Kidder 2000); unrestricted machines work similarly, but have an ordinal tape.

An ittm is a Turing machine with three tapes whose cells are indexed by natural numbers:

- The input tape
- The output tape
- The working tape

Ittm's

It behaves like a standard Turing machine at successor steps of a computation. At limit steps of computation:

- The head goes back to the first cell.
- The machine goes into a limit state.
- The value of each cell equals the lim inf of the values at previous stages of computation.

Further results for ittm's

Theorem (Welch, Carl, S.)

There is an open ittm-decidable set A that is not ittm-semidecidable in countable time.

Theorem (Welch, Carl, S.)

The suprema of ittm-semidecision times for the following sets equal σ :

- 1. Singletons
- 2. Complements of singletons.

Some open problems

Question

Which Σ_2^1 sets admit countable Σ_2^1 -ranks?

The above results only answer this if either the set or its complement is countable. This remaining cases could be related to the next question:

Question

Does every Δ_2^1 Borel set have an ∞ -Borel code in $L_{\omega_1^V}$?

Combined with Stern's results, our partial result covers many interesting cases. But a general result seems out of reach. In particular, I was not able to adapt Louveau's method (TAMS 1980).

References

References

• Kechris, Marker, Sami, Π_1^1 Borel sets,

J. Symb. Log. 54 (1989), no. 3, 915–920.

▶ Stern,

On Lusin's restricted continuum problem, Annals Math. 120 (1984), no. 1, 7–37.

 Carl, Schlicht, Welch, Decision times of infinite computations, https://arxiv.org/abs/2011.04942 (2020), 11 pages

 Carl, Schlicht, Welch, Lengths of countable projective ranks, In preparation (2020)