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Outline

I Cohen’s first model is obtained by
I Adding a sequence of Cohen reals, but
I Forgetting their order

I We aim to

I Study forcing over Cohen’s first model
I Understand forcing phenomena that come from Dedekind finite sets

I Joint work with Asaf Karagila (Norwich)
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Cohen’s first model

Let L[G] be an Add(ω, ω)-generic extension of L. Denote by

A = {an | n ∈ ω},

where an is the nth Cohen real.

Cohen’s first model is the submodel M = L(A) of L[G].

Recall that an infinite set B is called Dedekind-finite if there is no injection
f : ω → B.

Fact

Every set in M is definable in L[G] from A and finitely many an.

Fact

A is Dedekind-finite in M and in particular, A is not well-ordered in M .
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Symmetric extensions

Definition

Let G be a group of automorphisms of P. We say that F is a filter of subgroups over
G if it is a filter on the lattice of subgroups. (It is closed under finite intersections
and supergroups, and nonempty.)

We say that F is normal if whenever H ∈ F and π ∈ G, then πHπ−1 ∈ F .

Definition

We call 〈P,G,F〉 a symmetric system if P is a notion of forcing, G is a subgroup of
Aut(P), and F is a normal filter of subgroups over G.
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Symmetric extensions

We denote by stabG(ẋ) the group {π ∈ G | πẋ = ẋ}, the stabiliser of ẋ. We say that ẋ
is F-symmetric if stabG(ẋ) ∈ F .

HSF denotes the class of hereditarily F-symmetric names.

Definition

If G is P-generic over V , then HSGF = {ẋG | ẋ ∈ HSF} is the symmetric extension
induced by G.

HSGF is a model of ZF and HS satisfies a version of the forcing theorem.

Lemma (The Symmetry Lemma)

Let p ∈ P be a condition, π ∈ Aut(P) and ẋ a P-name. Then

p  ϕ(ẋ) ⇐⇒ πp  ϕ(πẋ).
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Cohen’s first model

Our group of automorphisms is the group G of finitary permutations of ω acting on
Add(ω, ω) in the natural way:

πp(πn,m) = p(n,m).

Take F to be the filter of subgroups generated by {fix(s) | s ∈ [ω]<ω}, where
fix(s) = {π ∈ G | π�s = id}.

For each n, let ȧn = {〈m̌, p〉 | p(n,m) = 1} be the canonical name for the nth Cohen
real and Ȧ = {(ȧn, 1) | n < ω} the canonical name for A.

Fact

πȧn = ȧπn, and therefore πȦ = Ȧ, for all π ∈ G.

Philipp Schlicht Forcing over Cohen’s symmetric model 6 / 16



Collapsing cardinals without collapsing cardinals
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Collapsing

Definition

For two sets X and Y , let Col(X,Y ) denote the set of partial functions p : X → Y
such that |p| is well-ordered and |p| < |X|, ordered by reverse inclusion.

For X = A in Cohen’s first model, the conditions are finite.

Theorem (Karagila, S.)

Let κ be an infinite cardinal and G a Col(A, κ)-generic filter over M . Then M and
M [G] have the same sets of ordinals.

Proof sketch, part 1.

One can work with canonical conditions 〈p, q̇f 〉, where qf is induced by f : ω → κ.

Let 〈p, q̇f 〉 be a condition which forces that Ẋ is a name for a set of ordinals. Let
s ∈ [ω]<ω with fix(s) ⊆ stab(Ẋ). We can assume that s = supp(p) = dom(f).
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Collapsing

Proof sketch, part 2.

Suppose that 〈p0, q̇f0〉 and 〈p1, q̇f1〉 are two extensions of 〈p, q̇f 〉. Again, we may
assume that supp(pi) = domfi for i < 2.

If p1�s = p2�s, then the two must agree on any statement of the form α̌ ∈ Ẋ. This is
because there is an automorphism in fix(s) moving supp(p0) \ s to be disjoint of
supp(p1). So 〈πp0, πq̇f0〉 is compatible with 〈p1, q̇f1〉 while πα̌ = α̌ and πẊ = Ẋ.
(This uses dom(f) = s.)

In particular, if 〈p′, q̇f ′〉 ≤ 〈p, q̇f 〉 and 〈p′, q̇f ′〉  α̌ ∈ Ẋ, then 〈p′�s, q̇f ′�s〉 = 〈p′ � s, q̇f 〉
already forced this statement. The same holds for α̌ /∈ Ẋ.

Hence ẊG is determined by finitely many Cohen reals an, thus ẊG ∈M .

Philipp Schlicht Forcing over Cohen’s symmetric model 9 / 16



Collapsing

Corollary

A is still Dedekind-finite after forcing with Col(A, κ).

Proof.

Suppose not, then there is an injective function f : ω → A in M [G], where G is
Col(A, κ) over M . This function f can be coded as a real.

Since no new reals are added by the previous theorem, f ∈M . Contradiction.

How can one characterize preservation of Dedekind-finiteness of A for Col(A, κ) in
general? And what about Add(A, 1) = Col(A, 2)?
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Preserving Dedekind-finiteness
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Preserving Dedekind-finiteness

Theorem (Karagila-S.)

Assuming ZF, the following are equivalent for any Dedekind-finite set A.

1 [A]<ω is Dedekind-finite.

2 Add(A, 1) contains no infinite antichains.

3 Add(A, 1) contains no countably infinite antichains.

4 Add(A, 1) has the finite decision property.

5 A remains Dedekind-finite in any generic extension by Add(A, 1).

6 A is not collapsed in any generic extension by Add(A, 1).

7 Add(A, 1) fails to add a Cohen real.

8 Add(A, 1) fails to add a real.

9 Add(A, 1) fails to add a set of ordinals.

10 2A is extremally disconnected.
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Preserving Dedekind-finiteness

This theorem admits an easy corollary, which is applicable to Cohen’s first model.

Corollary

If A is a Dedekind-finite which can be linearly ordered, for instance a set of real
numbers, then all conditions of the previous theorem hold.
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Preserving Dedekind-finiteness

Definition

We say that Add(A, 1) has the finite decision property if for all formulas ϕ(ẋ), the
set Mϕ(ẋ) of minimal elements of Nϕ(ẋ) = {p | p  ϕ(ẋ)} with respect to restriction
is finite.

Lemma

The following are equivalent.

1 [A]<ω is Dedekind-finite.

2 Add(A, 1) has the finite decision property.

The proof uses the sunflower lemma, a finite version of the ∆-system lemma:

Lemma (Erdős–Rado 1960)

If a and b are positive integers, then any collection of b!ab+ 1 sets of size ≤b contains
a sunflower of size >a.
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Preserving Dedekind-finiteness

Lemma

Let A be a Dedekind-finite set. The following conditions are equivalent.

1 [A]<ω is Dedekind-infinite.

2 Add(A, 1) adds a set of ordinals.

Proof.

1 =⇒ 2: Let ~A = 〈An | n < ω〉 be a disjoint sequence witnessing that [A]<ω is
Dedekind-infinite. Let

ẋ = {〈p, ň〉 | p[An] = {0}}.

It is easy to see that ẋ is a name for a Cohen real.

2 =⇒ 1: Suppose that 1 forces that Ẋ is a new subset of some ordinal η, and let
ϕ(α̌) denote the formula α̌ ∈ Ẋ.

By the finite decision property, Mϕ(α̌) is finite for all α < η.

However, the union of domains of conditions in
⋃
α<ηM

ϕ(α̌) is infinite, since Ẋ is a
name for a new set of ordinals.

Thus it is easy to construct a disjoint sequence of finite subsets of A.
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Some open problems

Suppose that A is Dedekind-finite.

I Are there similar characterizations as above of the statement: Col(A, κ)
preserves Dedekind-finiteness of A?

I If 2A is compact, then [A]<ω is Dedekind-finite. Is there a combinatorial
characterization of compactness of 2A?
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