Forcing over Cohen's symmetric model

Philipp Schlicht, University of Bristol

16th January 2020

Partially funded by the EU's Horizon 2020 programme, grant No 794020

Outline

- ▶ Cohen's first model is obtained by
 - Adding a sequence of Cohen reals, but
 - Forgetting their order
- ▶ We aim to
 - Study forcing over Cohen's first model
 - ▶ Understand forcing phenomena that come from Dedekind finite sets
- ▶ Joint work with Asaf Karagila (Norwich)

Cohen's first model

Let L[G] be an Add (ω, ω) -generic extension of L. Denote by

 $A = \{a_n \mid n \in \omega\},\$

where a_n is the *n*th Cohen real.

Cohen's first model is the submodel M = L(A) of L[G].

Recall that an infinite set B is called Dedekind-finite if there is no injection $f: \omega \to B$.

Fact

Every set in M is definable in L[G] from A and finitely many a_n .

Fact

A is Dedekind-finite in M and in particular, A is not well-ordered in M.

Symmetric extensions

Definition

Let \mathcal{G} be a group of automorphisms of \mathbb{P} . We say that \mathcal{F} is a filter of subgroups over \mathcal{G} if it is a filter on the lattice of subgroups. (It is closed under finite intersections and supergroups, and nonempty.)

We say that \mathcal{F} is normal if whenever $H \in \mathcal{F}$ and $\pi \in \mathcal{G}$, then $\pi H \pi^{-1} \in \mathcal{F}$.

Definition

We call $\langle \mathbb{P}, \mathcal{G}, \mathcal{F} \rangle$ a symmetric system if \mathbb{P} is a notion of forcing, \mathcal{G} is a subgroup of Aut(\mathbb{P}), and \mathcal{F} is a normal filter of subgroups over \mathcal{G} .

Symmetric extensions

We denote by $\operatorname{stab}_{\mathcal{G}}(\dot{x})$ the group $\{\pi \in \mathcal{G} \mid \pi \dot{x} = \dot{x}\}$, the stabiliser of \dot{x} . We say that \dot{x} is \mathcal{F} -symmetric if $\operatorname{stab}_{\mathcal{G}}(\dot{x}) \in \mathcal{F}$.

 $\mathsf{HS}_\mathcal{F}$ denotes the class of hereditarily $\mathcal{F}\text{-symmetric names}.$

Definition

If G is \mathbb{P} -generic over V, then $\mathsf{HS}_{\mathcal{F}}^G = \{\dot{x}^G \mid \dot{x} \in \mathsf{HS}_{\mathcal{F}}\}\$ is the symmetric extension induced by G.

 $\mathsf{HS}^G_{\mathcal{F}}$ is a model of ZF and \Vdash^{HS} satisfies a version of the forcing theorem.

Lemma (The Symmetry Lemma)

Let $p \in \mathbb{P}$ be a condition, $\pi \in Aut(\mathbb{P})$ and \dot{x} a \mathbb{P} -name. Then

 $p \Vdash \varphi(\dot{x}) \iff \pi p \Vdash \varphi(\pi \dot{x}).$

Cohen's first model

Our group of automorphisms is the group \mathcal{G} of finitary permutations of ω acting on $\operatorname{Add}(\omega, \omega)$ in the natural way:

$$\pi p(\pi n, m) = p(n, m).$$

Take \mathcal{F} to be the filter of subgroups generated by $\{\operatorname{fix}(s) \mid s \in [\omega]^{<\omega}\}$, where $\operatorname{fix}(s) = \{\pi \in \mathcal{G} \mid \pi \upharpoonright s = \operatorname{id}\}.$

For each n, let $\dot{a}_n = \{ \langle \check{m}, p \rangle \mid p(n, m) = 1 \}$ be the canonical name for the *n*th Cohen real and $\dot{A} = \{ (\dot{a}_n, 1) \mid n < \omega \}$ the canonical name for A.

Fact

 $\pi \dot{a}_n = \dot{a}_{\pi n}$, and therefore $\pi \dot{A} = \dot{A}$, for all $\pi \in \mathcal{G}$.

Collapsing cardinals without collapsing cardinals

Collapsing

Definition

For two sets X and Y, let $\operatorname{Col}(X, Y)$ denote the set of partial functions $p: X \to Y$ such that |p| is well-ordered and |p| < |X|, ordered by reverse inclusion.

For X = A in Cohen's first model, the conditions are finite.

Theorem (Karagila, S.)

Let κ be an infinite cardinal and G a $\operatorname{Col}(A, \kappa)$ -generic filter over M. Then M and M[G] have the same sets of ordinals.

Proof sketch, part 1.

One can work with canonical conditions $\langle p, \dot{q}_f \rangle$, where q_f is induced by $f : \omega \to \kappa$. Let $\langle p, \dot{q}_f \rangle$ be a condition which forces that \dot{X} is a name for a set of ordinals. Let $s \in [\omega]^{<\omega}$ with fix $(s) \subseteq \operatorname{stab}(\dot{X})$. We can assume that $s = \operatorname{supp}(p) = \operatorname{dom}(f)$.

Collapsing

Proof sketch, part 2.

Suppose that $\langle p_0, \dot{q}_{f_0} \rangle$ and $\langle p_1, \dot{q}_{f_1} \rangle$ are two extensions of $\langle p, \dot{q}_f \rangle$. Again, we may assume that $\operatorname{supp}(p_i) = \operatorname{dom} f_i$ for i < 2.

If $p_1 | s = p_2 | s$, then the two must agree on any statement of the form $\check{\alpha} \in \dot{X}$. This is because there is an automorphism in fix(s) moving $\operatorname{supp}(p_0) \setminus s$ to be disjoint of $\operatorname{supp}(p_1)$. So $\langle \pi p_0, \pi \dot{q}_{f_0} \rangle$ is compatible with $\langle p_1, \dot{q}_{f_1} \rangle$ while $\pi \check{\alpha} = \check{\alpha}$ and $\pi \dot{X} = \dot{X}$. (This uses dom(f) = s.)

In particular, if $\langle p', \dot{q}_{f'} \rangle \leq \langle p, \dot{q}_f \rangle$ and $\langle p', \dot{q}_{f'} \rangle \Vdash \check{\alpha} \in \dot{X}$, then $\langle p' \upharpoonright s, \dot{q}_{f' \upharpoonright s} \rangle = \langle p' \upharpoonright s, \dot{q}_f \rangle$ already forced this statement. The same holds for $\check{\alpha} \notin \dot{X}$.

Hence \dot{X}^G is determined by finitely many Cohen reals a_n , thus $\dot{X}^G \in M$.

Collapsing

Corollary

A is still Dedekind-finite after forcing with $\operatorname{Col}(A, \kappa)$.

Proof.

Suppose not, then there is an injective function $f: \omega \to A$ in M[G], where G is $\operatorname{Col}(A, \kappa)$ over M. This function f can be coded as a real.

Since no new reals are added by the previous theorem, $f \in M$. Contradiction.

How can one characterize preservation of Dedekind-finiteness of A for $\operatorname{Col}(A, \kappa)$ in general? And what about $\operatorname{Add}(A, 1) = \operatorname{Col}(A, 2)$?

Theorem (Karagila-S.)

Assuming ZF, the following are equivalent for any Dedekind-finite set A.

- $[A]^{<\omega}$ is Dedekind-finite.
- **2** Add(A, 1) contains no infinite antichains.
- **3** Add(A, 1) contains no countably infinite antichains.
- **4** Add(A, 1) has the finite decision property.
- **(9)** A remains Dedekind-finite in any generic extension by Add(A, 1).
- **(4)** A is not collapsed in any generic extension by Add(A, 1).
- Add(A, 1) fails to add a Cohen real.
- Solution Add(A, 1) fails to add a real.
- **(a)** Add(A, 1) fails to add a set of ordinals.
- O 2^A is extremally disconnected.

This theorem admits an easy corollary, which is applicable to Cohen's first model.

Corollary

If A is a Dedekind-finite which can be linearly ordered, for instance a set of real numbers, then all conditions of the previous theorem hold.

Definition

We say that $\operatorname{Add}(A, 1)$ has the finite decision property if for all formulas $\varphi(\dot{x})$, the set $M^{\varphi(\dot{x})}$ of minimal elements of $N^{\varphi(\dot{x})} = \{p \mid p \Vdash \varphi(\dot{x})\}$ with respect to restriction is finite.

Lemma

The following are equivalent.

- $[A]^{<\omega}$ is Dedekind-finite.
- **2** $\operatorname{Add}(A,1)$ has the finite decision property.

The proof uses the sunflower lemma, a finite version of the Δ -system lemma:

Lemma (Erdős–Rado 1960)

If a and b are positive integers, then any collection of b!ab+1 sets of size $\leq b$ contains a sunflower of size >a.

Lemma

Let A be a Dedekind-finite set. The following conditions are equivalent.

- $[A]^{<\omega}$ is Dedekind-infinite.
- **2** Add(A, 1) adds a set of ordinals.

Proof.

1 \implies 2: Let $\vec{A} = \langle A_n \mid n < \omega \rangle$ be a disjoint sequence witnessing that $[A]^{<\omega}$ is Dedekind-infinite. Let

$$\dot{x} = \{ \langle p, \check{n} \rangle \mid p[A_n] = \{0\} \}.$$

It is easy to see that \dot{x} is a name for a Cohen real.

2 \implies 1: Suppose that 1 forces that \dot{X} is a new subset of some ordinal η , and let $\varphi(\check{\alpha})$ denote the formula $\check{\alpha} \in \dot{X}$.

By the finite decision property, $M^{\varphi(\check{\alpha})}$ is finite for all $\alpha < \eta$.

However, the union of domains of conditions in $\bigcup_{\alpha < \eta} M^{\varphi(\check{\alpha})}$ is infinite, since \dot{X} is a name for a new set of ordinals.

Thus it is easy to construct a disjoint sequence of finite subsets of A.

Some open problems

Suppose that A is Dedekind-finite.

- Are there similar characterizations as above of the statement: $Col(A, \kappa)$ preserves Dedekind-finiteness of A?
- ▶ If 2^A is compact, then $[A]^{<\omega}$ is Dedekind-finite. Is there a combinatorial characterization of compactness of 2^A ?

References

▶ Asaf Karagila, Philipp Schlicht:

How to have more things by forgetting how to count them submitted, available on arxiv.org