ITERATION OF L-PROPER FORCINGS

Any forcing \mathbb{P} stands for one definable from a real parameter and \mathbb{P}^M denotes the forcing in any set M containing this real. We call a forcing \mathbb{P} *L*-proper if it is proper with respect to all models L[x] containing the parameter, where x is a countable subsets of ω_1 .¹

In the following, we assume that each iterand is a forcing on the reals, i.e. its domain is a subset of $\mathcal{P}(\omega)$.² Moreover, we assume that each iterand is defined from a real in the ground model

Let $p \sqsubseteq q$ denote that p is an initial segment of q.

We call a \mathbb{P} -name σ almost nice if it is of the form $\sigma = \{(\check{n}, p) \mid p \in S_n\}$ for subsets S_n of \mathbb{P} . If \mathbb{P} is an iterated forcing \mathbb{P}_{α} , we inductively define σ to be hereditarily almost nice if each $p \in S_n$ is hereditarily almost nice. Since the set of hereditarily nice conditions is dense in \mathbb{P}_{α} , we will from now write \mathbb{P}_{α} for this set. We will assume every name for a real is almost nice.

Suppose that $\pi: \alpha \to S$ is an order isomorphism. We define $\pi_*: \mathbb{P}_{\alpha} \to V$ by adding blocks of 1s in the gaps between S in the hereditary support of a condition $p \in \mathbb{P}_{\alpha}$. More precisely, we define $\pi(p)$ for $p \in \mathbb{P}_{\alpha}$ and $\pi(\sigma)$ for almost nice \mathbb{P}_{α} -names σ by induction on α :

$$\pi_*(p)(j) = \begin{cases} \pi_*(p(i)) & \text{if } \pi(i) = j \\ 1 & \text{if } j \notin \operatorname{ran}(\pi) \end{cases}$$
$$\pi_*(\sigma) = \{(\check{n}, \pi_*(p)) \mid (\check{n}, p) \in \sigma\}).$$

We will also use π_* to denote $(\pi \restriction \bar{\alpha})_*$ for $\bar{\alpha} < \alpha$.

If \overline{M} is transitive and $\pi \colon \overline{M} \to M$ is an isomorphism with $\alpha = \operatorname{Ord}^{\overline{M}}$ and $S = \operatorname{Ord}^{M} \subseteq \operatorname{Ord}$, then $(\pi \upharpoonright \alpha)_{*} = \pi \upharpoonright \mathbb{P}_{\alpha}^{\overline{M}}$ by the definition of $(\pi \upharpoonright \alpha)_{*}$ via a trivial induction and elementarity of π .

Suppose that \mathbb{P}_{γ} is a countable support iteration of *L*-proper forcings on the reals. Suppose that *S* is a countable subset of γ and $\pi: \alpha_S \to S$ is its uncollapse. We will also write $\pi(\alpha_S) = \sup(S)$ to simplify the notation below.

One can assume that the domain of each iterand is $\mathcal{P}(\omega)$. In case you don't want to make this assumption, we will work with the upwards closure \hat{G} for \leq of a filter G on \mathbb{P}_{γ} . Note that for $(p, \dot{q}) \in G$, $(1, \dot{q})$ might not be in G but is in \hat{G} .

Let M = L[x] for a countable set x of ordinals such that L[x] contains the parameter of the iterands of \mathbb{P}_{α} .

The following defines $(M, \mathbb{P}^{\widetilde{M}}_{\alpha})$ -generic conditions in \mathbb{P}_{β} by translating the generic filter via π^{-1}_* . For $\beta \leq \gamma$ write $\beta^* = \sup(\pi^{-1}[\beta])$.

Definition 0.1. Suppose that M is a transitive model of ZFC^- with $\alpha_S \in M$ and $\beta \leq \gamma$. Call a condition $q \in \mathbb{P}_\beta$ generic if for every \mathbb{P}_β -generic filter G over V with $q \in G, \pi^{-1}_*[\hat{G}] \cap \mathbb{P}^M_{\beta^*}$ is a $\mathbb{P}^M_{\beta^*}$ -generic filter over M.

Date: February 4, 2021.

¹This implies $\mathbb{P}^{L[x]} \subseteq \mathbb{P}$.

²This is no restriction. If you prefer to work with the standard definition of a tree forcing, take $\mathcal{P}(\omega^{<\omega})$ instead.

We fix some notation: For $p \in \mathbb{P}_{\gamma}$ and $\beta < \gamma$, let p^{β} denote $p \upharpoonright [\beta, \gamma)$. We can identify p^{β} canonically with a \mathbb{P}_{β} -name such that $p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} p^{\beta} \in \mathbb{P}_{[\beta,\gamma)}$. $(\mathbb{P}_{[\beta,\gamma)}$ means an iteration whose indices start with β .) Furthermore, if A is a subset of \mathbb{P}_{γ} and $\{q \upharpoonright \beta \mid q \in A\}$ is a maximal antichain in \mathbb{P}_{β} , then $p_A = \{(q^{\beta}, q \upharpoonright \beta) \mid q \in A\}$ is a \mathbb{P}_{β} -name for an element of $\mathbb{P}_{[\beta,\gamma)}$. Let $N_{\beta,\gamma}$ denote the set of such names.

Let Γ be a \mathbb{P}_{γ} -name for the \mathbb{P}_{γ} -generic filter, and Γ^* a \mathbb{P}_{γ} -name for $\pi^{-1}_*[\hat{\Gamma}]$.

Lemma 0.2. Suppose that $\pi(\alpha) \geq \beta$, $q \in \mathbb{P}_{\beta}$ is generic and $p \in N^{M-3}_{\beta^*,\alpha}$ Then there is a generic $r \supseteq q$ in $\mathbb{P}_{\pi(\alpha)}$ with

$$q \Vdash_{\mathbb{P}_{\beta}} (r^{\beta})^{\Gamma \upharpoonright \beta} \leq \pi_*(p^{\Gamma^* \upharpoonright \beta^*}).$$

Proof. The proof is a variant of preservation of properness. We proceed by induction on α . Since the claim is vacuous for $\alpha = 0$ or $\beta = \gamma$, we can assume that $0 < \alpha \leq \alpha_S$ and $\beta < \gamma$.

Case. $\alpha = \overline{\alpha} + 1$.

We will assume that $\pi(\bar{\alpha}) \geq \beta$, since otherwise the extension of q to $r \in \mathbb{P}_{\pi(\alpha)}$ by 1 is as required.

By the inductive hypothesis for $\bar{\alpha}$, we have a generic $\bar{r} \in \mathbb{P}_{\pi(\bar{\alpha})}$ with $\bar{r} \upharpoonright \beta = q$ and

$$q \Vdash (\bar{r}^{\beta})^{\Gamma \upharpoonright \beta} \le \pi_*(p^{\Gamma^* \upharpoonright \beta^*}).$$

Let G be a $\mathbb{P}_{\pi(\bar{\alpha})}$ -generic filter over V with $\bar{r} \in G$ and work in V[G]. Since $r = \bar{r}$ is generic, $G^* := \pi_*^{-1}[\hat{G}] \cap \mathbb{P}^M_{\bar{\alpha}}$ is a $\mathbb{P}^M_{\bar{\alpha}}$ -generic filter over M. Since $\dot{\mathbb{P}}^G_{\pi(\bar{\alpha})}$ is L-proper in V[G], there is an $(M[G^*], \mathbb{P}^{M[G^*]})$ -generic condition $s \leq p(\bar{\alpha})^{G^*}$.

Back in V, pick a $\mathbb{P}_{\pi(\bar{\alpha})}$ -name \dot{s} such that \bar{r} forces the above property of s. Then extend \bar{r} to $r \in \mathbb{P}_{\pi(\alpha)}$ by letting $r(\pi(\bar{\alpha})) = \dot{s}$ and extending by 1 above $\pi(\bar{\alpha})$.

This ensures that r is generic. In more detail, suppose that G is $\mathbb{P}_{\pi(\bar{\alpha})}$ -generic and I = G * H is $\mathbb{P}_{\pi(\alpha)}$ -generic over V with $r \in I$. Since $\bar{r} \in G$, $G^* := \pi_*^{-1}[\hat{G}]$ is a $\mathbb{P}^M_{\bar{\alpha}}$ -generic filter over M. Let \dot{t} denote $\mathbb{P}_{\bar{\alpha}}$ -names for elements of the forcing at $\bar{\alpha}$, then $\pi_*(\dot{t})^G = \dot{t}^{G^*}$ by the definition of π_* . Since $r \in G * H$, we have $\dot{s}^G \in H$ and hence $H = \{\dot{t}^{G^*} \mid \pi_*(\dot{t})^G \in H\}$ is $\mathbb{P}_{\bar{\alpha}}$ -generic over $M[G^*]$. So $\pi_*^{-1}[\hat{I}] = \{(p, \dot{t}) \in \mathbb{P}_{\alpha} \mid \pi_*(p) \in \hat{G}, \pi_*(\dot{t})^G \in H\}$ is \mathbb{P}_{α} -generic over M.⁴

Moreover, $\dot{s}^G \leq p(\pi(\bar{\alpha}))$ by the definition of \dot{s} , as required.

Case. α is a limit.

We can assume that $\sup(\pi[\alpha]) > \beta$, since otherwise the extension of q to $r \in \mathbb{P}_{\pi(\alpha)}$ by 1 is as required. Let n_0 be least with $\pi(\alpha_{n_0}) > \beta$.

Genericity at limits works just like in the usual proof of preservation of properness. We still give details. Suppose that $\alpha = \sup_{n \in \omega} \alpha_n$, where $\vec{\alpha} = \langle \alpha_n \mid n \in \omega \rangle$ is strictly increasing. Let $\vec{D} = \langle D_n \mid n \in \omega \rangle$ enumerate all dense open subsets $D \in M$ of \mathbb{P}^M_{α} . Assume each set appears infinitely often. For each $n \in \omega$, there is some $p_{A_n} \in N^M_{\alpha_n,\alpha}$ with $A_n \in M$, $A_n \subseteq D_n$, by density of D_n . Moreover, we can choose A_{n+1} to refine A_n in the sense that for all $p \in A_n$, there is a subset S of $A_{n+1} \cap \{s \in \mathbb{P}^M_{\alpha} \mid s \leq p\}$ such that $\{s \upharpoonright \alpha_{n+1} \mid p \in A_{n+1}\}$ is a maximal antichain below $p \upharpoonright \alpha_{n+1}$.

³This explicit notation is not strictly necessary; one could keep more closely to the usual proof of preservation of properness.

⁴Upwards closure of \hat{I} is used since $(\pi_*(p), \pi_*(t))$ might not be a condition.

Let $r_{n_0} = q$. We construct a \sqsubseteq -increasing sequence $\vec{r} = \langle r_n \mid n \geq n_0 \rangle$ by applying the induction hypothesis successively to r_n , α_n and p_{A_n} for $n \geq n_0$.

Let $G^* = \pi_*^{-1}[\hat{G}] \cap \mathbb{P}^M_{\alpha}$. Note that G^* is upwards closed by the upwards closure of $G^* \upharpoonright \alpha_n$ given by the inductive hypothesis.

Claim. G^* is \mathbb{P}^M_{α} -generic over M.

Proof. Since $r_n \in G \upharpoonright \pi(\alpha_n)$, $G^* \upharpoonright \alpha_n$ contains $p_n \upharpoonright \alpha_n$ for a unique $p_n \in A_n$, for each $n \in \omega$. Since A_n refines A_m as above for m < n, we have $p_n \le p_m$ for all $m \le n$ and hence $p_m \upharpoonright \alpha_n \in G^* \upharpoonright \alpha_n$. Thus $p_n \in G^* \cap D_n$ for all $n \in \omega$, as required. \Box

Claim. G^* is a filter.

Proof. Let $p \in \mathbb{P}$. We claim that the set D_p of all $r \in \mathbb{P}_{\alpha}$ with (a) $r \leq p$ or (b) $\exists n \in \omega \ (r \restriction \alpha_n) \perp (p \restriction \alpha_n)$ is open dense. Towards a contradiction, suppose there is some $t \in \mathbb{P}_{\alpha}$ with $s \notin D_p$ for all $s \leq t$. Since (a) fails for all $r \leq t$, we have $t \perp p$. Since (b) fails for t, there is some $s_0 \leq (t \restriction \alpha_0), (p \restriction \alpha_0)$. Since $t \perp p, s_0$ forces that the tails of t and p are incompatible. Repeat this step above s_0 to obtain a \sqsubseteq -increasing sequence $\langle s_n \mid n \in \omega \rangle$ with union $s \leq t, p$. This contradicts $t \perp p$.

Now take any $p, q \in G^*$. Since D_p and D_q are dense, there is some $r \in G^* \cap D_p \cap D_q$. Since (b) fails for all $r \in G^*$, we have $r \leq p, q$, as required.