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The Ehrenfeucht-Fräıssé game

• We have two models A and B, A ∩ B = ∅.
• EFω(A,B) is the game:

I x0 x1 · · · xn · · ·
II y0 y1 · · · yn · · ·

• Rules:

1. There are ω moves.

2. xi , yi ∈ A ∪ B.

3. xi ∈ A iff yi ∈ B.

4. Player I wins if for some n the relation xi ↔ yi , i < n, does not extend to

a partial isomorphism between A and B. Otherwise II wins.
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Partial (a.k.a. potential) isomorphism

TFAE:

1. II ↑ EFω(A,B) i.e. II has a winning strategy in EFω(A,B).

2. A ∼=p B i.e. A and B are isomorphic after some forcing.

(Ehrenfeucht 1957, Fräıssé 1953, Karp 1965 )
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Partial (a.k.a. potential) isomorphism

• If A and B are countable, then

A ∼= B ⇐⇒ II ↑ EFω(A,B).
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More generally, looking ahead

EFκ(A,B) is defined similarly but there are κ moves.
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More generally, looking ahead

TFAE:

1. II ↑ EFκ(A,B).

2. A ∼=κ
p B i.e. A and B are isomorphic after some

< κ-closed forcing.
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More generally, looking ahead

• If A and B are of size ≤ κ, then

A ∼= B ⇐⇒ II ↑ EFκ(A,B).
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Back to countable models

In an attempt to understand isomorphism of
countable models (an analytic relation) better, we
add an ordinal “clock” to the game EFω.
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Adding a clock β

• EFβω(A,B) is the following game:

I x0, α0 x1, α1 · · · xn, αn = 0
II y0 y1 · · · yn

• Rules:
1. There are only finitely many moves.

2. β > α0 > . . . > αn = 0.

3. xi , yi ∈ A ∪ B.

4. xi ∈ A iff yi ∈ B.

5. Player I wins if for some m he played αm and the relation
xi ↔ yi , i ≤ m, does not extend to a partial isomorphism
between A and B. Otherwise II wins.
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TFAE:

1. II ↑ EFω(A,B).

2. II ↑ EFβω(A,B) for all β < (|A|+ |B |)+.
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Scott Watershed

TFAE:

1. A 6∼=p B.

2. There is β (= β(A,B)) such that II ↑ EFβω(A,B) but
I ↑ EFβ+1

ω (A,B).
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Scott Watershed

• β is the Scott Watershed where advantage in the game
EFγω(A,B) moves from II to I, more exactly

• II ↑ EFγω(A,B) for all γ ≤ β.

• I ↑ EFγω(A,B) for all γ > β.
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The “complexity” of a model: Scott Height

Fix A (of any size). Let

SH(A) = sup{β((A, ~a), (A, ~b)) : ~a, ~b ∈ A<ω, (A, ~a) �p (A, ~b)}

= the Scott Height of A.

[Scott, 1965]
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Capturing isomorphism on countable models

For countable A and B:

A ∼= B ⇐⇒ II ↑ EFSH(A)+ω
ω (A,B)

⇐⇒ B |= ψA,

where ψA ∈ Lω1ω is the Scott Sentence of A.
[Scott, 1965]
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Descriptive set theory of countable models

• An invariant subset of ωω is Borel iff it is definable in Lω1ω

[Scott, 1964].

• The orbit of a countable model is always Borel [Scott, 1964].

• There is a rich study of Borel and analytic (such as ∼=)
equivalence relations, starting from the above results of
Scott.

• Countable ordinals play a central role.
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A motivating question

• Question: Can the Scott analysis of countable models in
terms of countable ordinals and sentences of Lω1ω be
extended from countable to uncountable?
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Potential problems

• Need transfinite EF-games, i.e. EFα, α > ω. But such
games may be non-determined [Hyttinen and Väänänen, 1990],

[Mekler et al., 1993], [Hyttinen et al., 2002].

• Clocks may have to be more general than just ordinals:
we will use trees as clocks. But that leads to the question
what is the order of trees like. Maybe it is not as nice as
the order of ordinals?

• There is no maximal countable ordinal. Could there be a
maximal tree of cardinality ℵ1 without uncountable
branches?
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Ordering of trees

Suppose T and T ′ are trees i.e. partial orders in which the
predecessors of every element are well-ordered and there is a
unique root.

Definition
T ≤ T ′ if there is π : T → T ′ such that for all t, u ∈ T :

t <T u → π(t) <T ′ π(u).

This π is called a weak embedding. If it is one-one it is called
a strong embedding. Trees T and T ′ are equivalent, T ≡ T ′,
if T ≤ T ′ and T ′ ≤ T .

18 / 60



Scott analysis Trees Uncountable Maximal trees UB sets

• Ordinals i.e. well-founded trees (mod ≡) form a proper
class that is well-ordered by ≤.

• Trees of height κ without branches of length κ are the
“ordinals” of GBS.

• There are ≤-incomparable trees of cardinality ℵ1 without
uncountable branches. [Todorčević and Väänänen, 1999]
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Interesting classes of trees without κ-branches

A tree of height κ in which there is no branch of length κ is
called:

1. A κ-Aronszajn tree if all levels are of size < κ.

2. A wide κ-Aronszajn tree if all levels are of size ≤ κ.

3. A very wide κ-Aronszajn tree if all levels are of size ≤ κ<κ.
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A kind of “successor” operation on trees

• σ(T ) denotes the tree of ascending chains in T , ordered
by end-extension.

• T < σ(T ). (Kurepa)

• In many ways σ(T ) acts as the “successor” of the tree T .

• If T is a (wide) κ-Aronszajn tree, then σ(T ) is a very
wide κ-Aronszajn tree.
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We are ready to assign a clock-tree to the
transfinite EF-game EFκ.
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EF-game with a clock-tree T

• EFT (A,B) is the following game:

I x0, t0 x1, t1 · · · xξ, tξ · · ·
II y0 y1 · · · yξ · · ·

• Rules:
1. There are as many moves as Player I can play.

2. t0 < t1 < . . . < tξ < . . . is an increasing chain in T .

3. xi ∈ A iff yi ∈ B.

4. Player I wins if for some ξ he played tξ and the relation
xi ↔ yi , i ≤ ξ, does not extend to a partial isomorphism
between A and B. Otherwise II wins.

5. If Player I cannot move (because he run out of branch in T ),
Player II wins.
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TFAE:

1. II ↑ EFκ(A,B).

2. II ↑ EFT (A,B) for all trees T without κ-branches, even

assuming |T | ≤ 2(|A|+|B|)<κ . [Hyttinen, 1987]
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TFAE:

1. I ↑ EFκ(A,B).

2. I ↑ EFσ(S)(A,B) for some S without κ-branches even with

|S | ≤ (|A|+ |B|)<κ. [Karttunen, 1984]

25 / 60



Scott analysis Trees Uncountable Maximal trees UB sets

T ≤ T ′ syncs well with the EF-game:

Fix A and B (of any size).

• If T ≤ T ′ then

II ↑ EFT ′(A,B)⇒ II ↑ EFT (A,B)

and
I ↑ EFT (A,B)⇒ I ↑ EFT ′(A,B).

• If I ↑ EFT ′(A,B) and II ↑ EFT (A,B), then T < T ′.

[Hyttinen and Väänänen, 1990]
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An analogue of the Scott Watershed

Theorem ([Hyttinen and Väänänen, 1990])

Suppose A and B are models of cardinality κ such that
A � B. Then:

1. There is a tree S such that I ↑ EFσ(S)(A,B) but
I 6↑ EFS(A,B). Moreover, |S | ≤ (|A|+ |B |)<κ.

2. There is a tree K ≤ S such that II ↑ EFK (A,B) but
II 6↑ EFσ(K)(A,B). Moreover, |K | ≤ 2(|A|+|B|)<κ .
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Given A and B, the class of trees is divided into regions of
advantage in the EF-game.
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Two1 analogues of Scott Height [Hyttinen and Väänänen, 1990]

Let A be a model of cardinality κ.
A tree T without κ-branches is a:

• universal equivalence tree of A if for all B of cardinality κ:

A ∼= B ⇐⇒ II ↑ EFT (A,B).

• universal non-equivalence tree of A if for all B of
cardinality κ:

A � B ⇐⇒ I ↑ EFT (A,B).

1Because of non-determinacy we have two rather than one analogue.
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Linear orders

Theorem ([Hyttinen and Tuuri, 1991])

Assume CH. There is a linear order of cardinality ℵ1 without a
universal equivalence tree of cardinality ℵ1.
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ℵ1-separable2 abelian group

Theorem ([Eklof et al., 1995])

1. PFA ` every ℵ1-separable abelian group of cardinality ℵ1

has a universal equivalence tree of cardinality ℵ1.

2. 3 ` there is an ℵ1-separable abelian group of cardinality
ℵ1 without a universal equivalence tree of cardinality ℵ1.

Such results put a bound on how to put invariants on such
groups.

2Every countable subset is contained in a countable free direct summand.
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The idea is that the bigger a universal equivalence
tree is, the more complicated the model is. If there
is no universal equivalence tree of cardinality κ
(there is always one of cardinality 2κ

<κ

), then the
model is in a sense maximally complicated.
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Open problem

• Question: Given a (wide) κ-Aronszajn tree T , are there
models A and B of cardinality κ such that
II ↑ EFT (A,B) but A � B?

• Yes, if κ = ω. [Karp, 1965]

• Yes, if κ<κ = κ. [Hyttinen and Tuuri, 1991]

• Yes, if T is not too big, e.g. has height < κ. [Shelah, 2008]

• Open also if “wide” is dropped or replaced by “very wide”.
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Connection to ∆1
1

Theorem ([Mekler and Väänänen, 1993])

Assume CH and R ⊆ ω1 × ω1. The following conditions are
equivalent:

1. The model (ω1,R) has a universal non-equivalence tree of
cardinality ℵ1.

2. The orbit of R in ωω1
1 is ∆1

1 in the Generalized Baire
Space ωω1

1 .
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Canary trees

Let Φ(ω1) be the result of replacing in the order type of ω1

every element by a copy of the rationals.

Theorem ([Mekler and Väänänen, 1993])

Assume CH. TFAE:

1. Φ(ω1) has a universal equivalence tree of cardinality ℵ1.

2. There is a wide Aronszajn tree (a “Canary” tree) which is
≤-above every tree of the form T (A), A ⊆ ω1

co-stationary.
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Theorem
κ > ω regular. Γ a countable complete first order theory.

1. If Γ is classifiable, then for every model A of Γ of
cardinality ℵ1 there is a tree of cardinality ℵ1 and of
countable height which is a universal non-equivalence tree
for A. [Shelah, 2023]

2. If κ<κ = κ and Γ is non-classifiable , then Γ has a model
A of cardinality κ such that no wide κ-Aronszajn tree is a
universal equivalence tree for A. [Hyttinen and Tuuri, 1991]

3. It is consistent, relative to the consistency of ZF, that if Γ
is unsuperstable, then Γ has a model A of cardinality κ
such that no wide κ-Aronszajn tree is a universal
non-equivalence tree for A. [Hyttinen and Tuuri, 1991]
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• The question of existence of universal (non)equivalence
trees for uncountable models emphasises the need to
understand what kind of classes of trees have maximal
(i.e. universal) trees.

• Problem: Given a class of trees, is there a maximal tree in
the class under weak embeddings?
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• MAω1 implies there is no maximal ℵ1-Aronszajn tree.
[Todorčević, 2007]

• MAω1 implies there is no maximal wide ℵ1-Aronszajn tree.
[Dz̆amonja and Shelah, 2021]

• κ<κ = κ implies there is no maximal wide κ-tree. (Because

|σ(T )| ≤ |T |<κ.)

• There is no maximal very wide κ-Aronszajn tree. (Because of σ.)

• Assume V = L and κ regular but not weakly compact. No
wide κ-Aronszajn tree T is maximal, for there is always a
κ-Souslin tree S such that S 6≤ T . [Todorčević and Väänänen, 1999],

[Ben-Neria - Magidor - Väänänen 2023].

• Is it consistent to have a maximal wide κ-Aronszajn tree?
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Theorem (Ben-Neria - Magidor - Väänänen 2023)

Assuming the consistency of a weakly compact cardinal above
a regular uncountable cardinal µ, it is consistent that there
exists a maximal wide µ+-Aronszajn tree, i.e. a tree of height
and cardinality µ+ with no branches of length µ+, into which
every wide µ+-Aronszajn tree can be (strongly) embedded.
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Universally Baire sets in Generalized Baire Spaces

Joint work with Menachem Magidor

• ωω1
1 topology by initial segments.

• κκ topology by initial segments.

• Nowhere dense ... as usual.

• κ-meager ...as usual.

• Σ1
1 ... as usual, but note that every subset of ωω1

1 may be
Σ1

1 (Schindler).

• Strongly Σ1
1 = Σ1 over Hκ+ .
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Recap: Universally Baire in ωω

• A ⊆ ωω is universally Baire if f −1[A] is Baire in E for
every continuous f : E → ωω.

• Schilling-Vaught 1983, Feng-Magidor-Woodin 1992.

• A σ-algebra in the intersection of Lebesque measurable
sets and Baire sets.

• Σ1
1-sets are UB.

• Large cardinals imply projective sets are UB.
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Recap: Forcing definition of UB

A ⊆ ωω is universally Baire iff for every P there is a P-term τ
such that for all countable M ≺ Hθ, θ big, with A,P ∈ M , and
for all G , P-generic over M , we have

[τ ]G = A ∩M[G ].
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Generalization to κκ, κ regular

We say that A ⊆ κκ is UB(P ,M,G), if for every P ∈ P there
is a P-term τ such that for all M ≺ Hθ, θ big, such that
|M | = κ, M ∈M and A, κ,P ∈ M , and for all G ∈ G,
P-generic over M , we have

[τ ]G = A ∩M[G ].
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UB(P ,M,G)

Typical cases:

• P is the class of κ-closed po-sets (CLκ), or just stationary
preserving (SP) po-sets.

• M is internally κ-closed models (ICκ). M =
⋃
α<κMα,

|Mα| < κ, {〈Mβ : β < α〉} ∪ {Mα} ⊆ Mα+1.

• G= all generics, G= stationary correct generics (SCO).
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A is κ-universally Baire if it satisfies UB(CLκ, ICκ, all).

Properties:

• Baire property.

• Bernstein property.

• Topological characterization.

• CLUB = {f ∈ κκ : f −1(0) contains a club } is not here.

• The set of (codes of) wide Aronszajn trees is here,
assuming Martin’s Axiom and not-CH, but not assuming
3.

• Same with the set of (codes of) Souslin trees.
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Theorem (Bernstein Property)

Suppose κ is regular. If A ⊆ κκ is κ-universally Baire, then
either A or κκ \ A contains a copy of 2κ.
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Need a weaker concept of universal Baireness in
order that CLUB, a natural and central concept,
would be included.
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A is weakly κ-universally Baire if it satisfies UB(SP, ICκ, SCO).

Properties:

• CLUB is here, so this does not imply Baire property.

• A weak Bernstein property in ωω1
1 , assuming MM++.

• V = L implies every Σ1
1 set is here (for κ = λ+, λ regular.)

• Can always force “SLN not here”.
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Theorem (A weak Bernstein property)

Assume MM++. If A ⊆ ωω1
1 is weakly universally Baire, then

either A of ωω1
1 \ A contains an ω1-rake.
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Figure: An ω1-rake.
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Conclusion: No large cardinals can imply that all strongly
Σ1

1-sets are weakly ω1-universally Baire.

We need something weaker than “weak”.
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The 1st version

SP(MM) is the class of stationary preserving po-sets that
force MM.

A is said to be very weakly κ-universally Baire if it satisfies
UB(SP(MM), ICκ, SCO).

Properties when κ = ω1:

• Every strongly Σ1
1 set is here, assuming a proper class of

Woodin cardinals.

• A weak Bernstein property, assuming MM++ and a
supercompact.
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The 2nd version

SP(?): stationary preserving po-sets forcing (?).

Definition
A is very weakly κ-universally Baire if it satisfies
UB(SP(?), ICκ, SCO).

Properties when κ = ω1:

• Every strongly projective set is here, assuming (?).

• A weak Bernstein property, assuming MM++ and a
supercompact.
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Conclusions

• Move from countable to uncountable is full of
troubles and surprises, as can be expected.

• By using trees as analogues of ordinals we can
go around some problems.

• MM++ and (?) are natural frameworks to
develop descriptive set theory in generalized
Baire spaces, when CH is not assumed.
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Thank you!
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