$\Sigma_1(X)$ and $\Pi_1(X)$ definability above large cardinals Farmer Schlutzenberg, TU Vienna

Generalised Baire Space and Large Cardinals, University of Bristol, February 8, 2024

This research was funded by the Austrian Science Fund (FWF) [grant Y 1498].

Reference:

- Low level definability above large cardinals, arXiv:2401.01979

Background:

- Lücke and Schlicht, Measurable cardinals and good $\Sigma_1(\{\kappa\})$ wellorderings,
- Lücke, Schindler and Schlicht, $\underline{\Sigma}_1(\{\kappa\})$ -definable subsets of H_{κ^+}
- Väänänen and Welch, <u>When cardinals determine the power set: inner</u> models and Härtig quantifier logic.
- Lücke and Müller, Σ₁-definability at higher cardinals: Thin sets, almost disjoint families and long well-orders

Suppose there are large cardinals $\leq \kappa$.

For this talk, consider definability of:

- wellorders of subsets of $\mathcal{P}(\kappa)$ of cardinality $> \kappa$,
- good wellorders of $\mathcal{P}(\kappa)$,
- ultrafilters over κ and club filter at κ .

Suppose there are large cardinals $\leq \kappa$.

For this talk, consider definability of:

- wellorders of subsets of $\mathcal{P}(\kappa)$ of cardinality > κ ,
- good wellorders of $\mathcal{P}(\kappa)$,
- ultrafilters over κ and club filter at κ .
- (slides also contain some things about almost disjoint families and independent families).

Focus: $\Sigma_1(X)$ and $\Pi_1(X)$ definability, for various X.

Definability

Definition 0.1.

Let C, X classes.

<u>*C* is $\Sigma_1(X)$ -definable</u> or just <u>*C* is $\Sigma_1(X)$ iff there is a Σ_1 formula φ and $\vec{x} \in X^{<\omega}$ such that for all y,</u>

$$\mathbf{y} \in \mathbf{C} \iff \varphi(\mathbf{y}, \vec{\mathbf{x}}).$$

Likewise <u>*C*</u> is $\Pi_1(X)$.

<u>*C* is $\Delta_1(X)$ iff *C* is both $\Sigma_1(X)$ and $\Pi_1(X)$.</u>

Definability

Definition 0.1.

Let C, X classes.

<u>*C* is $\Sigma_1(X)$ -definable</u> or just <u>*C* is $\Sigma_1(X)$ iff there is a Σ_1 formula φ and $\vec{x} \in X^{<\omega}$ such that for all y,</u>

$$\mathbf{y} \in \mathbf{C} \iff \varphi(\mathbf{y}, \vec{\mathbf{x}}).$$

Likewise <u>*C*</u> is $\Pi_1(X)$.

<u>*C* is $\Delta_1(X)$ iff *C* is both $\Sigma_1(X)$ and $\Pi_1(X)$.</u>

Definition 0.2.

 \mathcal{H}_{κ} is the set of sets hereditarily of cardinality $< \kappa$. OR = the class of ordinals. Card = the class of cardinals (we assume ZFC).

Definability

Definition 0.1.

Let C, X classes.

<u>*C* is $\Sigma_1(X)$ -definable</u> or just <u>*C* is $\Sigma_1(X)$ iff there is a Σ_1 formula φ and $\vec{x} \in X^{<\omega}$ such that for all y,</u>

$$\mathbf{y} \in \mathbf{C} \iff \varphi(\mathbf{y}, \vec{\mathbf{x}}).$$

Likewise <u>C is $\Pi_1(X)$ </u>.

<u>*C* is $\Delta_1(X)$ </u> iff *C* is both $\Sigma_1(X)$ and $\Pi_1(X)$.

Definition 0.2.

 \mathcal{H}_{κ} is the set of sets hereditarily of cardinality $< \kappa$. OR = the class of ordinals.

Card = the class of cardinals (we assume ZFC).

Question 0.3.

Which kinds of sets $C \subseteq \mathcal{H}_{\kappa^+}$ can be $\Sigma_1(X)$ or $\Pi_1(X)$, for a given X?

E.g. $X = \mathcal{H}_{\kappa} \cup OR$ (where OR is the ordinals).

Let *W* be a wellorder a set *D*. For $x \in D$, define

$$D_x = \{y \in D \mid yWx\}$$

and the initial segment of W below x

$$W_x = W \restriction D_x.$$

Recall:

Definition 0.4.

W is called a $\Sigma_1(X)$ -good wellorder iff

$$\{(x, W_x) \mid x \in D\}$$

is $\Sigma_1(X)$.

If *W* is a $\Sigma_1(X)$ -good wellorder of \mathcal{H}_{κ^+} where $X \subseteq \mathcal{H}_{\kappa^+}$, then *W* has ordertype κ^+ .

Definition 0.5.

If $\mu < \kappa$ are cardinals, say κ is μ -steady iff there is a cardinal ν such that:

- $\kappa=\nu$ or $\kappa=\nu^+,$

$$- \operatorname{cof}(\nu) \neq \mu$$
,

- ν is μ -closed; that is, $\alpha^{\mu} < \nu$ for all $\alpha < \nu$.

Definition 0.5.

If $\mu < \kappa$ are cardinals, say κ is μ -steady iff there is a cardinal ν such that:

- $\kappa = \nu$ or $\kappa = \nu^+$,
- $\operatorname{cof}(\nu) \neq \mu$,
- ν is μ -closed; that is, $\alpha^{\mu} < \nu$ for all $\alpha < \nu$.

Under GCH, if μ is measurable and $\mu < \kappa$, then TFAE:

- κ is $\mu\text{-steady,}$
- $cof(\kappa) \neq \mu$ and κ is not the successor of a cardinal ν with $cof(\nu) = \mu$,
- $j(\kappa) = \kappa$, for some/all measures on μ .

Definition 0.5.

If $\mu < \kappa$ are cardinals, say κ is μ -steady iff there is a cardinal ν such that:

- $\kappa = \nu$ or $\kappa = \nu^+$,
- $\operatorname{cof}(\nu) \neq \mu$,
- ν is μ -closed; that is, $\alpha^{\mu} < \nu$ for all $\alpha < \nu$.

Under GCH, if μ is measurable and $\mu < \kappa$, then TFAE:

- κ is $\mu\text{-steady,}$
- $cof(\kappa) \neq \mu$ and κ is not the successor of a cardinal ν with $cof(\nu) = \mu$,
- $j(\kappa) = \kappa$, for some/all measures on μ .

Definition 0.6.

A measure on a cardinal μ just means a μ -complete non-principal ultrafilter on μ .

Recall L[U] is a proper class inner model for 1 measurable cardinal.

Theorem 0.7 (Lücke, Schlicht).

Assume V = L[U] where μ is measurable. Let κ be an uncountable cardinal. Then there is a $\Sigma_1(\{\kappa\})$ -good wellorder of $\mathcal{P}(\kappa)$ iff either:

- $\kappa \leq \mu^+$, or
- κ is non- μ -steady.

(They also generalized this to $L[U_0, U_1]$.)

Recall L[U] is a proper class inner model for 1 measurable cardinal.

Theorem 0.7 (Lücke, Schlicht).

Assume V = L[U] where μ is measurable. Let κ be an uncountable cardinal. Then there is a $\Sigma_1({\kappa})$ -good wellorder of $\mathcal{P}(\kappa)$ iff either:

- $\kappa \leq \mu^+$, or
- κ is non- μ -steady.

(They also generalized this to $L[U_0, U_1]$.)

Question 0.8 (Lücke, Schlicht).

Assume V = L[U]. Let $\kappa > \mu^+$ be a μ -steady cardinal. Is there a $\Sigma_1(\{\kappa\})$ wellorder of $\mathcal{P}(\kappa)$?

Lücke and Müller answered this question...

Suppose μ is measurable and $\kappa > \mu^+$ is μ -steady, as witnessed by $\nu \le \kappa$. Then:

(i) There is no $\Sigma_1(V_\mu \cup \{\nu, \nu^+\})$ wellorder of $\mathcal{P}(\kappa)$.

(ii) If $cof(\kappa) > \omega$ then there is no $\Sigma_1(V_\mu \cup \{\kappa\})$ injection $f : \kappa^+ \to \mathcal{P}(\kappa)$.

Suppose μ is measurable and $\kappa > \mu^+$ is μ -steady, as witnessed by $\nu \le \kappa$. Then:

(i) There is no $\Sigma_1(V_\mu \cup \{\nu, \nu^+\})$ wellorder of $\mathcal{P}(\kappa)$.

(ii) If $cof(\kappa) > \omega$ then there is no $\Sigma_1(V_\mu \cup \{\kappa\})$ injection $f : \kappa^+ \to \mathcal{P}(\kappa)$.

A refinement:

Theorem 0.10 (S.).

Let μ be measurable and $\kappa > \mu^+$ be a μ -steady cardinal. Let U be a measure on μ . Then:

- (i) There is no $\Sigma_1(S_{\omega})$ wellorder of $[\eta]^{\omega}_{\uparrow}$ (and hence no such wellorder of $\mathcal{P}(\kappa)$).
- (ii) There is no $\Sigma_1(S_{\kappa})$ injective function $f : \kappa^+ \to \mathcal{P}(\kappa)$.
- (iii) For any $\Sigma_1(S_{\kappa})$ set $f \subseteq \kappa^+ \times \mathcal{P}(\kappa)$ and any club $C \subseteq \kappa^+$, $f \upharpoonright C$ is not an injective function,

Suppose μ is measurable and $\kappa > \mu^+$ is μ -steady, as witnessed by $\nu \le \kappa$. Then:

(i) There is no $\Sigma_1(V_\mu \cup \{\nu, \nu^+\})$ wellorder of $\mathcal{P}(\kappa)$.

(ii) If $cof(\kappa) > \omega$ then there is no $\Sigma_1(V_\mu \cup \{\kappa\})$ injection $f : \kappa^+ \to \mathcal{P}(\kappa)$.

A refinement:

Theorem 0.10 (S.).

Let μ be measurable and $\kappa > \mu^+$ be a μ -steady cardinal. Let U be a measure on μ . Then:

- (i) There is no $\Sigma_1(S_{\omega})$ wellorder of $[\eta]^{\omega}_{\uparrow}$ (and hence no such wellorder of $\mathcal{P}(\kappa)$).
- (ii) There is no $\Sigma_1(S_{\kappa})$ injective function $f : \kappa^+ \to \mathcal{P}(\kappa)$.
- (iii) For any $\Sigma_1(S_{\kappa})$ set $f \subseteq \kappa^+ \times \mathcal{P}(\kappa)$ and any club $C \subseteq \kappa^+$, $f \upharpoonright C$ is not an injective function,

where the following holds: Let

 $j: V \rightarrow \text{Ult}(V, U)$

the ultrapower. Then η is the supremum of the critical sequence of *j*. And for $\delta \in OR$, S_{δ} is the class of *U*-[0, δ)-stable sets.

There is no definability requirement on C.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

Giving those definitions...

Definition 0.11.

For an ordinal η , $[\eta]^{\omega}_{\uparrow}$ denotes $\{A \subseteq \eta \mid A \text{ has ordertype } \omega\}$.

Definition 0.12.

Recall that the critical sequence of j is the sequence $\langle \mu_n \rangle_{n < \omega}$ where $\mu_0 = \mu = \operatorname{cr}(j)$, and $\mu_{n+1} = j(\mu_n)$.

So $\mu_n < \mu_{n+1}$ for all *n*.

Let *U* be a measure on measurable cardinal μ .

Let \mathcal{T} be the iteration of V given by using U and its images. That is, we define M_{α}, U_{α} , and $i_{\alpha\beta} : M_{\alpha} \to M_{\beta}$ for $\alpha \leq \beta$, as follows:

Let *U* be a measure on measurable cardinal μ .

Let \mathcal{T} be the iteration of V given by using U and its images. That is, we define M_{α}, U_{α} , and $i_{\alpha\beta} : M_{\alpha} \to M_{\beta}$ for $\alpha \leq \beta$, as follows:

(i) $i_{\alpha\alpha}: M_{\alpha} \to M_{\alpha}$ will be the identity for all α ,

(ii)
$$M_0 = V, U_0 = U,$$

Let *U* be a measure on measurable cardinal μ .

Let \mathcal{T} be the iteration of V given by using U and its images. That is, we define M_{α}, U_{α} , and $i_{\alpha\beta} : M_{\alpha} \to M_{\beta}$ for $\alpha \leq \beta$, as follows:

(i) $i_{\alpha\alpha}: M_{\alpha} \to M_{\alpha}$ will be the identity for all α ,

(ii)
$$M_0 = V, U_0 = U,$$

(iii) Given M_{α} and U_{α} , then $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\alpha})$ and

$$i_{\alpha,\alpha+1}: M_{\alpha} \to M_{\alpha+1}$$

is the ultrapower map, and $U_{\alpha+1} = i_{\alpha,\alpha+1}(U_{\alpha})$. And for $\beta < \alpha$, we define

$$i_{\beta,\alpha+1}:M_{\beta}
ightarrow M_{\alpha+1}$$

by $i_{\beta,\alpha+1} = i_{\alpha,\alpha+1} \circ i_{\beta\alpha}$.

Let *U* be a measure on measurable cardinal μ .

Let \mathcal{T} be the iteration of V given by using U and its images. That is, we define M_{α}, U_{α} , and $i_{\alpha\beta} : M_{\alpha} \to M_{\beta}$ for $\alpha \leq \beta$, as follows:

(i) $i_{\alpha\alpha}: M_{\alpha} \to M_{\alpha}$ will be the identity for all α ,

(ii)
$$M_0 = V, U_0 = U,$$

(iii) Given M_{α} and U_{α} , then $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\alpha})$ and

 $i_{\alpha,\alpha+1}: M_{\alpha} \to M_{\alpha+1}$

is the ultrapower map, and $U_{\alpha+1} = i_{\alpha,\alpha+1}(U_{\alpha})$. And for $\beta < \alpha$, we define

$$i_{\beta,\alpha+1}:M_{\beta} \rightarrow M_{\alpha+1}$$

by $i_{\beta,\alpha+1} = i_{\alpha,\alpha+1} \circ i_{\beta\alpha}$.

(iv) Given M_{α} for all $\alpha < \lambda$, where λ is a limit, and given $i_{\alpha\beta} : M_{\alpha} \to M_{\beta}$ for all $\alpha < \beta < \lambda$, then M_{λ} is the direct limit under these maps, and

$$i_{\alpha\lambda}: M_{\alpha} \to M_{\lambda}$$

the direct limit map.

Let *U* be a measure on measurable cardinal μ .

Let \mathcal{T} be the iteration of V given by using U and its images. That is, we define M_{α}, U_{α} , and $i_{\alpha\beta} : M_{\alpha} \to M_{\beta}$ for $\alpha \leq \beta$, as follows:

(i) $i_{\alpha\alpha}: M_{\alpha} \to M_{\alpha}$ will be the identity for all α ,

(ii)
$$M_0 = V, U_0 = U,$$

(iii) Given M_{α} and U_{α} , then $M_{\alpha+1} = \text{Ult}(M_{\alpha}, U_{\alpha})$ and

 $i_{\alpha,\alpha+1}: M_{\alpha} \to M_{\alpha+1}$

is the ultrapower map, and $U_{\alpha+1} = i_{\alpha,\alpha+1}(U_{\alpha})$. And for $\beta < \alpha$, we define

$$i_{\beta,\alpha+1}:M_{\beta}
ightarrow M_{\alpha+1}$$

by $i_{\beta,\alpha+1} = i_{\alpha,\alpha+1} \circ i_{\beta\alpha}$.

(iv) Given M_{α} for all $\alpha < \lambda$, where λ is a limit, and given $i_{\alpha\beta} : M_{\alpha} \to M_{\beta}$ for all $\alpha < \beta < \lambda$, then M_{λ} is the direct limit under these maps, and

$$i_{\alpha\lambda}: M_{\alpha} \to M_{\lambda}$$

the direct limit map.

We write $M_{\alpha}^{T} = M_{\alpha}$, $i_{\alpha\beta}^{T} = i_{\alpha\beta}$, etc. Write $T_{U} = T$.

Definition 0.14.

Let $U, \mathcal{T}, M_{\alpha}$, etc, be as above. For $\gamma \leq \delta$ ordinals, say a set *x* is \underline{U} -[γ, δ)-stable iff

 $i_{\gamma\alpha}(x) = x$ for all α such that $\gamma \leq \alpha < \delta$.

Just say $[\gamma, \delta)$ -stable if *U* is clear.

We will prove part (ii), i.e. that there is no $\Sigma_1(S_{\kappa})$ injection $f : \kappa^+ \to \mathcal{P}(\kappa)$. First a standard fact:

Lemma 0.15.

Let U be a measure and

$$i_{lphaeta}:M_{lpha} o M_{eta}$$

the iteration maps of T_U .

Let κ be a limit ordinal and ξ any ordinal.

Then there is $\alpha < \kappa$ such that ξ is U-[α, κ)-stable; i.e.

 $i_{\alpha\beta}(\xi) = \xi$ for all $\beta \in [\alpha, \kappa)$.

We will prove part (ii), i.e. that there is no $\Sigma_1(S_{\kappa})$ injection $f : \kappa^+ \to \mathcal{P}(\kappa)$. First a standard fact:

Lemma 0.15.

Let U be a measure and

$$i_{lphaeta}:M_{lpha} o M_{eta}$$

the iteration maps of T_U .

Let κ be a limit ordinal and ξ any ordinal.

Then there is $\alpha < \kappa$ such that ξ is U-[α , κ)-stable; i.e.

 $i_{\alpha\beta}(\xi) = \xi$ for all $\beta \in [\alpha, \kappa)$.

Proof.

Otherwise observe that M_{κ} is illfounded, which it is not.

We will prove part (ii), i.e. that there is no $\Sigma_1(S_{\kappa})$ injection $f : \kappa^+ \to \mathcal{P}(\kappa)$. First a standard fact:

Lemma 0.15.

Let U be a measure and

$$i_{lphaeta}:M_{lpha} o M_{eta}$$

the iteration maps of T_U .

Let κ be a limit ordinal and ξ any ordinal.

Then there is $\alpha < \kappa$ such that ξ is U-[α, κ)-stable; i.e.

$$i_{\alpha\beta}(\xi) = \xi$$
 for all $\beta \in [\alpha, \kappa)$.

Proof.

Otherwise observe that M_{κ} is illfounded, which it is not.

Remark 0.16.

If $\kappa > \mu$ is μ -steady, where μ is measurable, U is a measure on μ , then κ and κ^+ are U-[0, κ)-stable.

Proof of part (ii) of theorem.

Suppose some injection

$$f:\kappa^+\to\mathcal{P}(\kappa)$$

is defined by a Σ_1 formula φ and $\vec{p} \in (S_\kappa)^{<\omega}$, so for $\alpha < \kappa^+$ and $A \subseteq \kappa$,

$$f(\alpha) = \mathbf{A} \iff \varphi(\mathbf{\vec{p}}, \alpha, \mathbf{A}).$$

Let $\mathcal{T} = \mathcal{T}_U$ (recall *U* is a measure on μ). Let M_{α} be the α th model and

 $i_{\alpha\beta}:M_{\alpha}\rightarrow M_{\beta}$

the iteration map. So for all $\alpha < \kappa$,

 $i_{0lpha}(ec{p})=ec{p}$

and

$$i_{0\alpha}(\kappa) = \kappa$$
 and $i_{0\alpha}(\kappa^+) = \kappa^+$

Since

 $V \models$ "*f* : $\kappa^+ \rightarrow \mathcal{P}(\kappa)$ is defined by $\varphi(\vec{p}, \cdot, \cdot)$ ",

and $i_{0\alpha}$ fixes the relevant parameters, M_{α} satisfies the same statement.

The resulting function defined in M_{α} is just *f*, by Σ_1 upwards absoluteness.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

3

Proof continued...

Given $\xi < \kappa^+$, we can fix $\alpha < \kappa$ such that ξ is $[\alpha, \kappa)$ -stable. Note that

 $i_{\alpha\beta}(f(\xi)) = f(\xi)$

for all $\beta \in [\alpha, \kappa)$. Let

$$f(\xi)^* = i_{\alpha\kappa}(f(\xi))$$

for (any/all) such α . So $f(\xi)^* \in M_{\kappa}$.

<u>Claim</u>: $f(\xi)^* \cap \kappa = f(\xi)$.

<u>Proof</u>: Let $\gamma < \kappa$. Let $\alpha \in (\gamma, \kappa)$ with

 $f(\xi)^* = i_{\alpha\kappa}(f(\xi)).$

Then

$$\gamma \in f(\xi) \iff i_{\alpha\kappa}(\gamma) \in i_{\alpha\kappa}(f(\xi)) \iff \gamma \in f(\xi)^*,$$

giving the claim; the rightmost equivalence is because

 $\gamma = i_{\alpha\kappa}(\gamma)$ and $i_{\alpha\kappa}(f(\xi)) = f(\xi)^*$.

So $f(\xi) \in M_{\kappa}$ for all $\xi < \kappa^+$, but $\mathcal{P}(\kappa) \cap M_{\kappa}$ has cardinality κ , contradiction.

Let κ be a limit a of measurable cardinals. Then:

(i) No wellorder of $\mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa, \kappa^+\})$.

Let κ be a limit a of measurable cardinals. Then:

(i) No wellorder of $\mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa, \kappa^+\})$.

(ii) If $cof(\kappa) > \omega$ then no injection $f : \kappa^+ \to \mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$.

Let κ be a limit a of measurable cardinals. Then:

- (i) No wellorder of $\mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa, \kappa^+\})$.
- (ii) If $cof(\kappa) > \omega$ then no injection $f : \kappa^+ \to \mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$.

(iii) Suppose:

$$- \operatorname{cof}(\kappa) = \omega$$
,

- $D \subseteq \mathcal{P}(\kappa)$ has cardinality > κ ,
- W is a wellorder of D,
- $D, W \text{ are } \Sigma_1(\{\kappa\}).$

Then there is a Σ_3^1 wellorder of the reals.

Let κ be a limit a of measurable cardinals. Then:

- (i) No wellorder of $\mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa, \kappa^+\})$.
- (ii) If $cof(\kappa) > \omega$ then no injection $f : \kappa^+ \to \mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$.

(iii) Suppose:

$$- \operatorname{cof}(\kappa) = \omega,$$

- $D \subseteq \mathcal{P}(\kappa)$ has cardinality > κ ,
- W is a wellorder of D,
- *D*, *W* are $\Sigma_1({\kappa})$.

Then there is a Σ_3^1 wellorder of the reals.

Question 0.18 (Lücke, Müller).

Is the hypothesis of (iii) consistent? What if $cof(\kappa) > \omega$?

Let κ be a limit a of measurable cardinals. Then:

- (i) No wellorder of $\mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa, \kappa^+\})$.
- (ii) If $cof(\kappa) > \omega$ then no injection $f : \kappa^+ \to \mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$.

(iii) Suppose:

$$- \operatorname{cof}(\kappa) = \omega,$$

–
$${\sf D}\subseteq {\cal P}(\kappa)$$
 has cardinality $>\kappa,$

- W is a wellorder of D,

- *D*, *W* are
$$\Sigma_1(\{\kappa\})$$
.

Then there is a Σ_3^1 wellorder of the reals.

Question 0.18 (Lücke, Müller).

Is the hypothesis of (iii) consistent? What if $cof(\kappa) > \omega$?

No...

Theorem 0.19 (S.).

Assume κ is a limit of measurables. Then:

- (a) No injection $f : \kappa^+ \to \mathcal{P}(\kappa)$ is $\Sigma_1(\mathcal{H}_{\kappa} \cup OR)$.
- (b) There are no D, W such that:
 - $D \subseteq \mathcal{P}(\kappa)$ has cardinality > κ ,
 - W is a wellorder of D,
 - *D*, *W* are both $\Sigma_1(\mathcal{H}_{\kappa} \cup OR)$.

(Cofinality of κ is irrelevant. In (a), no such *f* can be injective on a club $C \subseteq \kappa^+$.)

$\Sigma_1(X)$ -good wellorders and Woodin cardinals

Question 0.20.

Is it consistent that:

- there are (more) large cardinals,
- for every κ which is <u>not</u> a limit of measurables, there is a $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$ wellorder of $\mathcal{P}(\kappa)$?
- Or even a $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$ -good wellorder?

(A partial answer coming...)

Motivation for question:

Lücke, Schlicht: characterized those κ such that there is a Σ₁({κ})-good wellorder of P(κ) in L[U].

(For some κ , there isn't.)

- Lücke, Müller: No $\Sigma_1(\mathcal{H}_\mu \cup \{\nu, \nu^+\})$ wellorder of $\mathcal{P}(\kappa)$ when μ measurable $< \kappa$ and κ is μ -steady.
- Lücke, Müller: No Σ₁(H_κ ∪ {κ}) wellorder of P(κ) when κ a limit of measurables.

Mice:

- Structures *M* of form $L[\mathbb{E}]$ or $L_{\alpha}[\mathbb{E}]$ where \mathbb{E} is a sequence of extenders \mathbb{E} (like measures).
- Can use extenders from $\ensuremath{\mathbb{E}}$ to form ultrapowers

- Structures *M* of form $L[\mathbb{E}]$ or $L_{\alpha}[\mathbb{E}]$ where \mathbb{E} is a sequence of extenders \mathbb{E} (like measures).
- Can use extenders from $\ensuremath{\mathbb{E}}$ to form ultrapowers
- Some $E \in \mathbb{E}$ are partial

- Structures *M* of form $L[\mathbb{E}]$ or $L_{\alpha}[\mathbb{E}]$ where \mathbb{E} is a sequence of extenders \mathbb{E} (like measures).
- Can use extenders from $\ensuremath{\mathbb{E}}$ to form ultrapowers
- Some $E \in \mathbb{E}$ are partial
- Iterations have non-linear structure
- Iteration strategies guide the formation of iterations.

- Structures *M* of form $L[\mathbb{E}]$ or $L_{\alpha}[\mathbb{E}]$ where \mathbb{E} is a sequence of extenders \mathbb{E} (like measures).
- Can use extenders from \mathbb{E} to form ultrapowers
- Some $E \in \mathbb{E}$ are partial
- Iterations have non-linear structure
- Iteration strategies guide the formation of iterations.
- Can have many Woodin cardinals.

- Structures *M* of form $L[\mathbb{E}]$ or $L_{\alpha}[\mathbb{E}]$ where \mathbb{E} is a sequence of extenders \mathbb{E} (like measures).
- Can use extenders from $\ensuremath{\mathbb{E}}$ to form ultrapowers
- Some $E \in \mathbb{E}$ are partial
- Iterations have non-linear structure
- Iteration strategies guide the formation of iterations.
- Can have many Woodin cardinals.
- Roughly, the "mouse order" is wellfounded and ranks mice according to large cardinals.

- Structures *M* of form $L[\mathbb{E}]$ or $L_{\alpha}[\mathbb{E}]$ where \mathbb{E} is a sequence of extenders \mathbb{E} (like measures).
- Can use extenders from $\ensuremath{\mathbb{E}}$ to form ultrapowers
- Some $E \in \mathbb{E}$ are partial
- Iterations have non-linear structure
- Iteration strategies guide the formation of iterations.
- Can have many Woodin cardinals.
- Roughly, the "mouse order" is wellfounded and ranks mice according to large cardinals.
- From \mathbb{E}^M can determine order of constructibility $<^M$, a global wellorder of universe of M.
- For all cardinals θ of M, \mathcal{H}^{M}_{θ} is an initial segment of $<^{M}$.

- Structures *M* of form $L[\mathbb{E}]$ or $L_{\alpha}[\mathbb{E}]$ where \mathbb{E} is a sequence of extenders \mathbb{E} (like measures).
- Can use extenders from $\ensuremath{\mathbb{E}}$ to form ultrapowers
- Some $E \in \mathbb{E}$ are partial
- Iterations have non-linear structure
- Iteration strategies guide the formation of iterations.
- Can have many Woodin cardinals.
- Roughly, the "mouse order" is wellfounded and ranks mice according to large cardinals.
- From \mathbb{E}^M can determine order of constructibility $<^M$, a global wellorder of universe of M.
- For all cardinals θ of M, \mathcal{H}^{M}_{θ} is an initial segment of $<^{M}$.
- Good wellorders of $\mathcal{P}(\kappa)^M$ defined in mice *M* are typically a restriction of $<^M$.

- Structures *M* of form $L[\mathbb{E}]$ or $L_{\alpha}[\mathbb{E}]$ where \mathbb{E} is a sequence of extenders \mathbb{E} (like measures).
- Can use extenders from $\ensuremath{\mathbb{E}}$ to form ultrapowers
- Some $E \in \mathbb{E}$ are partial
- Iterations have non-linear structure
- Iteration strategies guide the formation of iterations.
- Can have many Woodin cardinals.
- Roughly, the "mouse order" is wellfounded and ranks mice according to large cardinals.
- From \mathbb{E}^M can determine order of constructibility $<^M$, a global wellorder of universe of M.
- For all cardinals θ of M, \mathcal{H}^{M}_{θ} is an initial segment of $<^{M}$.
- Good wellorders of $\mathcal{P}(\kappa)^M$ defined in mice *M* are typically a restriction of $<^M$.
- If E^M ↾ κ^{+M} is simply Σ₁(X) over M, then <^M yields a Σ₁(X)-good wellorder of (H_{κ⁺})^M.

M_1 is the canonical proper class mouse with 1 Woodin cardinal.

Theorem 0.21 (Steel).

Work in $M_1 = L[\mathbb{E}]$. Then $\mathbb{E} = \mathbb{E}^K$, where K is the "core model". Therefore \mathbb{E} is definable over the universe of M_1 without parameters.

A related result:

Theorem 0.22 (S., approx 2007, 2014).

Let M be a mouse with no largest cardinal, which is sufficiently self-iterable (can define enough of its own iteration strategy). Then \mathbb{E}^M is definable over the universe of M without parameters.

For *M*₁, Welch and Väänänen show:

Theorem 0.23 (Welch, Väänänen, 2021).

In M_1 , the relation " $x = \mathcal{P}(y)$ " is Σ_1 -in-Card (Card is allowed as a predicate).

(They show that \mathbb{E}^{M_1} is Σ_1 -in-Card.)

All 3 come down to identifying \mathbb{E}^{M} via comparison and universality arguments, and require strong degree of self-iterability.

A somewhat different kind of proof (based more on condensation) gives:

Theorem 0.24 (S., approx 2015).

Let *M* be a mouse and $\kappa > \omega_1^M$ an uncountable cardinal of *M*. Then $\mathbb{E} \upharpoonright \kappa$ is definable over \mathcal{H}_{κ}^M from the parameter $\mathbb{E} \upharpoonright \omega_1^M$.

This doesn't require any self-iterability.

うつう 川田 ふかく 山下 ふうく

Question 0.25.

In a mouse $M = L[\mathbb{E}]$, how simply definable are \mathbb{E}^M and $<^M$?

For example:

- Is $\mathbb{E} \upharpoonright \kappa^+$ a $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$ -definable set? (By L-M, not if κ limit of meas.)
- Is $<^{M} \upharpoonright \kappa^{+}$ a $\Sigma_{1}(\mathcal{H}_{\kappa} \cup \{\kappa\})$ -definable set?
- If yes, then $\{\mathbb{E} \upharpoonright \kappa\}$ and $\{\mathcal{H}_{\kappa}\}$ are also.

Theorem 0.26 (S.).

Work in $M_1 = L[\mathbb{E}]$. Let κ be an uncountable cardinal which is not a limit of measurables, and not Mahlo. Then:

(i) { $\mathbb{E}|\kappa$ } is $\Sigma_1(\mathcal{H}_{\kappa} \cup {\kappa})$, (ii) { \mathcal{H}_{κ} } is $\Sigma_1(\mathcal{H}_{\kappa} \cup {\kappa})$.

But some smallness is necessary:

Theorem 0.27.

Let κ be ω_1 -iterable. Then $\{V_{\kappa}\} = \{\mathcal{H}_{\kappa}\}$ is not $\Sigma_1(V_{\kappa} \cup \{\kappa\})$.

Measurable > ω_1 -iterable > weakly compact.

Theorem 0.28.

Work in M_1 . For all uncountable cardinals κ which are not a limit of measurables, there is a $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$ -good wellorder of \mathcal{H}_{κ^+} , and also of $\mathcal{P}(\kappa)$.

Remark 0.29.

- If κ is ω_1 -iterable, it can't just be the restriction of $<^M$.
- What if not a restriction of $<^{M}$?

Theorem 0.28.

Work in M_1 . For all uncountable cardinals κ which are not a limit of measurables, there is a $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$ -good wellorder of \mathcal{H}_{κ^+} , and also of $\mathcal{P}(\kappa)$.

Remark 0.29.

- If κ is ω_1 -iterable, it can't just be the restriction of $<^M$.
- What if not a restriction of $<^{M}$?

In the proof, the good wellorder is lexicographic:

- first on mouse order,
- then order of constructibility (in an identified mouse).

Theorem 0.28.

Work in M_1 . For all uncountable cardinals κ which are not a limit of measurables, there is a $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$ -good wellorder of \mathcal{H}_{κ^+} , and also of $\mathcal{P}(\kappa)$.

Remark 0.29.

- If κ is ω_1 -iterable, it can't just be the restriction of $<^M$.
- What if not a restriction of $<^{M}$?

In the proof, the good wellorder is lexicographic:

- first on mouse order,
- then order of constructibility (in an identified mouse).

Given $X, Y \subseteq \kappa$, we first identify the "least good mouse" N_X with $X \in N_X$, and likewise N_Y , and then set $X <^* Y$ iff:

- N_X is strictly below N_Y in the mouse order, or
- $N_X = N_Y \models X <^{N_X} Y$ (where $<^{N_X}$ is the constructibility order of N_X).

 $(\mathcal{H}_{\kappa} \text{ will } \underline{\text{not}} \text{ be an initial segment of the order for } \mathcal{H}_{\kappa^+}.)$

Theorem 0.30.

Let κ be a limit of measurable cardinals with $cof(\kappa) = \omega$. Then there is no $\Sigma_1(\mathcal{H}_{\kappa} \cup OR)$ ultrafilter over κ which contains no bounded subsets of κ .

Proof sketch.

Suppose not and let φ be Σ_1 and $\vec{p} \subseteq \mathcal{H}_{\kappa} \cup OR$ be such that

 $\boldsymbol{U} = \{\boldsymbol{A} \mid \varphi(\boldsymbol{\vec{p}}, \boldsymbol{A})\}$

is an ultrafilter over κ . For simplicity assume $\vec{p} \subseteq \mathcal{H}_{\kappa} \cup \{\kappa\}$.

Fix a strictly increasing sequence $\langle \mu_n \rangle_{n < \omega}$ of measurables with supremum κ . Fix a sequence $\langle D_n \rangle_{n < \omega}$ of measures D_n on μ_n , with

$$\vec{p} \cap \mathcal{H}_{\kappa} \subseteq \mathcal{H}_{\kappa_0}.$$

Let $A = \bigcup_{n < \omega} [\kappa_{2n}, \kappa_{2n+1})$ and $B = \bigcup_{n < \omega} [\kappa_{2n+1}, \kappa_{2n+2})$. Then

$$A \in U \iff B \notin U.$$

Proof continued...

Suppose $A \in U$.

Consider the iteration \mathcal{T} using measures from $\{D_n\}_{n<\omega}$ and their pointwise images, of length $\kappa + 1$, with final iteration map $\ell = i_{0\kappa}$,

$$\ell: V \to M_{\kappa}$$

such that

$$\ell(\kappa_n) = \kappa_{n+1}$$

for all $n < \omega$.

Now observe that:

- $-\ell(\kappa)=\kappa,$
- $-\ell(\vec{p})=\vec{p},$
- $\ell(A) = B.$

Since $\varphi(\vec{p}, A)$ holds, by elementarity, $M_{\kappa} \models \varphi(\ell(\vec{p}), \ell(A))$, so

$$M_{\kappa} \models \varphi(\vec{p}, B).$$

But φ is Σ_1 , so then $\varphi(\vec{p}, B)$ really holds, so $B \in U$, contradiction.

Let $Club_{\kappa}$ denote the club filter at κ . Some facts:

- (S. Friedman, L. Wu) If κ is weakly compact then $Club_{\kappa}$ is not $\Pi_1(\mathcal{H}_{\kappa^+})$.
- (Lücke, Schindler, Schlicht) If κ is a regular cardinal which is a stationary limit of ω_1 -iterable cardinals then Club_{κ} is not $\Pi_1(\{\kappa\})$.

Let $Club_{\kappa}$ denote the club filter at κ . Some facts:

- (S. Friedman, L. Wu) If κ is weakly compact then $Club_{\kappa}$ is not $\Pi_1(\mathcal{H}_{\kappa^+})$.
- (Lücke, Schindler, Schlicht) If κ is a regular cardinal which is a stationary limit of ω_1 -iterable cardinals then Club_{κ} is not $\Pi_1(\{\kappa\})$.

Theorem 0.31.

Let κ be inaccessible. Then:

(i) Suppose $\mu < \kappa$ and μ is measurable, as witnessed by a measure U on μ . Let

 $j: V \rightarrow \text{Ult}(V, U)$

be the ultrapower map and $S_j = \{x \mid j(x) = x\}$.

Then $\operatorname{Club}_{\kappa}$ is not $\Pi_1(S_i)$.

(ii) Suppose κ is a limit of measurables. Then $Club_{\kappa}$ is not $\Pi_1(V_{\kappa} \cup OR)$.

Let $Club_{\kappa}$ denote the club filter at κ . Some facts:

- (S. Friedman, L. Wu) If κ is weakly compact then $Club_{\kappa}$ is not $\Pi_1(\mathcal{H}_{\kappa^+})$.
- (Lücke, Schindler, Schlicht) If κ is a regular cardinal which is a stationary limit of ω_1 -iterable cardinals then Club_{κ} is not $\Pi_1(\{\kappa\})$.

Theorem 0.31.

Let κ be inaccessible. Then:

(i) Suppose $\mu < \kappa$ and μ is measurable, as witnessed by a measure U on μ . Let

 $j: V \rightarrow \text{Ult}(V, U)$

be the ultrapower map and $S_j = \{x \mid j(x) = x\}$.

Then $\operatorname{Club}_{\kappa}$ is not $\Pi_1(S_i)$.

(ii) Suppose κ is a limit of measurables. Then $Club_{\kappa}$ is not $\Pi_1(V_{\kappa} \cup OR)$.

Part (ii) is not just a corollary to the facts mentioned above: If κ is the least inaccessible limit of measurables, then the set *C* of all limits of measurables < κ is club and consists of singular cardinals. But every ω_1 -iterable is weakly compact.

Proof.

Part (i): Suppose otherwise.

CLAIM 1.

Let $A \subseteq \kappa$ be such that $M = \text{Ult}(V, U) \models "A$ is stationary". Then A is stationary.

Proof.

Fix a Π_1 formula φ and $\vec{x} \in (S_j)^{<\omega}$ such that for all $A \subseteq \kappa$,

$$A \in \operatorname{Club}_{\kappa} \iff \varphi(\vec{x}, A).$$

Then stationarity in κ is $\Sigma_1(S_j)$, and in fact for $A \subseteq \kappa$,

A is stationary
$$\iff \kappa \setminus A \notin \operatorname{Club}_{\kappa} \iff \neg \varphi(\vec{x}, \kappa \setminus A).$$

By elementarity of *j* and since $j(\vec{x}) = \vec{x}$ and $j(\kappa) = \kappa$, *M* satisfies this same characterization of stationarity.

Proof.

Part (i): Suppose otherwise.

CLAIM 1.

Let $A \subseteq \kappa$ be such that $M = \text{Ult}(V, U) \models A$ is stationary. Then A is stationary.

Proof.

Fix a Π_1 formula φ and $\vec{x} \in (S_j)^{<\omega}$ such that for all $A \subseteq \kappa$,

$$A \in \operatorname{Club}_{\kappa} \iff \varphi(\vec{x}, A).$$

Then stationarity in κ is $\Sigma_1(S_j)$, and in fact for $A \subseteq \kappa$,

A is stationary
$$\iff \kappa \setminus A \notin \operatorname{Club}_{\kappa} \iff \neg \varphi(\vec{x}, \kappa \setminus A).$$

By elementarity of *j* and since $j(\vec{x}) = \vec{x}$ and $j(\kappa) = \kappa$, *M* satisfies this same characterization of stationarity.

But then if $A \subseteq \kappa$ and $A \in M \models$ "A is stationary", then

$$\boldsymbol{M} \models \neg \varphi(\boldsymbol{\vec{x}}, \kappa \backslash \boldsymbol{A}),$$

but $\neg \varphi$ is Σ_1 , so

$$\neg \varphi(\vec{x}, \kappa \backslash A),$$

so A is stationary.

Proof continued...

We now exhibit a non-stationary set $A \in M$ such that $M \models A$ is stationary. Let

$$\mathbf{A} = \{ \alpha < \kappa \mid \mathsf{cof}^{\mathbf{M}}(\alpha) = \mu^+ \}.$$

Then $M \models$ "A is stationary".

CLAIM 2.

A is non-stationary.

Proof.

Let *C* be the closure of $j^{"}\kappa$ in κ . So *C* is club in κ , so it suffices to see that

 $C \cap A = \emptyset.$

Since $\mu^+ \notin \operatorname{rg}(j)$, we have

$$\boldsymbol{A}\cap(\boldsymbol{j}^{\boldsymbol{``}\boldsymbol{\kappa}})=\emptyset,$$

so it suffices to see that

$$\mathsf{A} \cap (\mathsf{C} \setminus (j``\kappa)) = \emptyset.$$

Let $\alpha \in C \setminus (j^{"}\kappa)$. Then $cof(\alpha) = \mu$. But *M* is closed under μ -sequences, so $cof^{M}(\alpha) = \mu$ also, so $\alpha \notin A$.

This completes the proof.

Proof.

Part (ii): This is an immediate corollary of part (i) and the theorem of Kunen below.

Theorem 0.32 (Kunen).

Let α be an ordinal. Then there are only finite many measurable cardinals μ such that $j(\alpha) > \alpha$, where U is some measure on μ and

 $j: V \rightarrow \text{Ult}(V, U)$

is the ultrapower map.

Almost disjoint families

Definition 0.33.

Let κ be an infinite cardinal. Recall an <u>almost disjoint family (at κ)</u> is a set

$$\mathscr{F} \subseteq \mathcal{P}(\kappa)$$

such that:

- A is unbounded in κ for every $A \in \mathscr{F}$, and
- $A \cap B$ is bounded in κ for all $A, B \in \mathscr{F}$ with $A \neq B$.

And \mathscr{F} <u>maximal</u> if there is no almost disjoint \mathscr{F}' with $\mathscr{F} \subsetneq \mathscr{F}'$. <u>Mad</u> = maximal almost disjoint.

Theorem 0.34 (Mathias).

There is no \sum_{1}^{1} infinite mad family at ω .

Theorem 0.35 (Lücke, Müller).

If κ is an ω_1 -iterable cardinal which is a limit of measurables then there is no $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$ almost disjoint family \mathscr{F} at κ such that \mathscr{F} has cardinality $> \kappa$.

(Thus, no $\Sigma_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$) mad family of cardinality $\geq \kappa$.)

Theorem 0.36 (S.).

If κ a limit of measurable cardinals then:

- there is no $\Sigma_1(\mathcal{H}_{\kappa} \cup OR)$ mad family $\mathscr{F} \subseteq \mathcal{P}(\kappa)$ of cardinality $\geq \kappa$, and
- *if* $cof(\kappa) > \omega$ *then there is no* $\Sigma_1(\mathcal{H}_{\kappa} \cup OR)$ *almost disjoint family* $\mathscr{F} \subseteq \mathcal{P}(\kappa)$ *of cardinality* $> \kappa$.

(Exercise: If $cof(\kappa) = \omega$ then there is a $\Delta_1(\{\kappa\})$ almost disjoint family $\mathscr{F} \subseteq \mathcal{P}(\kappa)$ of cardinality $> \kappa$.)

Theorem 0.37 (Miller).

If V = L then there is a Π_1^1 infinite mad family at ω .

However, motivated by some other considerations involving stronger hypotheses, Lücke and Müller asked:

Question 0.38 (Lücke, Müller).

Do sufficiently strong large cardinal properties of κ imply that there is no $\Pi_1(\mathcal{H}_{\kappa} \cup \{\kappa\})$ almost disjoint family of cardinality $> \kappa$?

Well:

Theorem 0.39 (S.).

It is consistent relative to large cardinals / mouse existence hypotheses that:

- κ is a Woodin limit of Woodins and there is a Π₁({κ}) mad family of cardinality > κ, or
- κ is superstrong and there is a $\Pi_1(\{A, \kappa\})$ mad family of cardinality > κ , for some $A \subseteq \omega_1$.

Beyond Woodin limit of Woodins, need mouse existence hypotheses.

Independent families

Definition 0.40.

Let κ be an infinite cardinal. Recall an independent family (at κ) is a set

$$\mathscr{F} \subseteq \mathcal{P}(\kappa)$$

such that:

- A is unbounded in κ for every $A \in \mathscr{F}$, and
- for all finite sets $\mathscr{A}, \mathscr{B} \subseteq \mathscr{F}$ with $\mathscr{A} \cap \mathscr{B} = \emptyset$, we have

 $(\bigcap \mathscr{A}) \cap (\bigcap \mathscr{B}') \neq \emptyset,$

where $\mathscr{B}' = \{\kappa \setminus B \mid B \in \mathscr{B}\}.$

And \mathscr{F} maximal if there is no independent \mathscr{F}' with $\mathscr{F} \subsetneq \mathscr{F}'$.

The relative consistency of $\Pi_1(X)$ mad families adapts directly to $\Pi_1(X)$ maximal independent families:

Theorem 0.41 (S.).

It is consistent relative to large cardinals / mouse existence hypotheses that:

- κ is a Woodin limit of Woodins and there is a $\Pi_1(\{\kappa\})$ maximal independent family of cardinality > κ , or
- κ is superstrong and there is a $\Pi_1(\{A, \kappa\})$ maximal independent family of cardinality > κ , for some $A \subseteq \omega_1$.

(The proof is the same structure, but the combinatorics are a little different.)

Question 0.42.

Suppose μ is measurable, $\kappa > \mu$ a cardinal.

Let S_{κ} be the class of all U-[0, κ)-stable sets. Suppose $\kappa \in S_{\kappa}$.

- Can there be / is there a $\Sigma_1(S_{\kappa})$ ultrafilter on κ ? Or ultrafilter base?
- What about $\Pi_1(S_{\kappa})$?
- What about a filter with other nice properties?

Thank you!