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Wetzel's problem

Recall that a function f: C — C is called entire when it is complex
differentiable everywhere.?

1On rare occasions a few mathematicians use “C” to denote the set of complex
numbers instead of Cohen forcing. Crazy, | know!
2 John Wetzel (1932-2021)
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Wetzel's problem

Recall that a function f: C — C is called entire when it is complex
differentiable everywhere.?
Question (Wetzel '617)

Let F be a set of entire functions f: C — C. If {f(z):f € F}is
countable for every z € C, is F itself countable??

1On rare occasions a few mathematicians use “C” to denote the set of complex
numbers instead of Cohen forcing. Crazy, | know!
2 John Wetzel (1932-2021)
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Wetzel's problem

Recall that a function f: C — C is called entire when it is complex
differentiable everywhere.?

Question (Wetzel '617)

Let F be a set of entire functions f: C — C. If {f(z):f € F}is
countable for every z € C, is F itself countable??

Theorem (Erdés '63)

The answer is yes iff CH is false. In other words, the existence of
(pairwise distinct) (f,, : o < wy) such that

Vz € C({fu(2) : @ < w1 }| < wy)

is equivalent to CH.

1On rare occasions a few mathematicians use “C” to denote the set of complex
numbers instead of Cohen forcing. Crazy, | know!
2 John Wetzel (1932-2021)
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Wetzel's problem

Lemma (Erdés)

For any countable dense X C C and any countable Y C C there is a
non-constant entire f, such that

fFlY] C X.
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Wetzel's problem

Lemma (Erdés)

For any countable dense X C C and any countable Y C C there is a
non-constant entire f, such that

fFlY] C X.

Fix X countable dense
(zo : @ < wi) ... enumeration of C
fol{zs : B < a}] C X forms a Wetzel family
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Erdos’ problem

Question (Erdés '63)

In general, without assuming CH, is there a family F of size 2 such
that at each z € C,
{f(z): f € F}| <2%2
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Erdos’ problem

Question (Erdés '63)

In general, without assuming CH, is there a family F of size 2 such
that at each z € C,
{f(z): f € F}| <2%2

Unfortunately I am unable to decide the following question: Can one construct a
family of distinct entire functions fy (1 < @ < ;) such that for every z the set
{fae (z)} has power less than ¢? We proved that the construction is possible if
e = N, but for ¢ > ¥ our proof breaks down. Paul Cohen’s recent proof of the
independence of the continuum hypothesis gives this problem some added interest.
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Erdos’ problem

Question (Erdés '63)
In general, without assuming CH, is there a family F of size 2 such
that at each z € C,
{f(z): f € F}| <2%2
Unfortunately I am unable to decide the following question: Can one construct a
family of distinct entire functions fy (1 < @ < ;) such that for every z the set
{fae (z)} has power less than ¢? We proved that the construction is possible if

e = N, but for ¢ > ¥ our proof breaks down. Paul Cohen’s recent proof of the
independence of the continuum hypothesis gives this problem some added interest.

After a suggestion by Martin Goldstern:

Definition
We call a family F as above a Wetzel family.
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Erdos’ problem

Theorem (Kumar-Shelah 2017)

Erdés’ problem is independent of ZFC 4+ —CH. More precisely, over a
ground model satisfying GCH:
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Erdos’ problem

Theorem (Kumar-Shelah 2017)

Erdés’ problem is independent of ZFC 4+ —CH. More precisely, over a
ground model satisfying GCH:

1. After adding X, many Cohen reals, there is no Wetzel family.
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Erdos’ problem

Theorem (Kumar-Shelah 2017)

Erdés’ problem is independent of ZFC 4+ —CH. More precisely, over a
ground model satisfying GCH:

1. After adding X, many Cohen reals, there is no Wetzel family.

2. There is a cardinal and cofinality preserving forcing extension in
which 280 = R, and there is a Wetzel family.
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Erdos’ problem

Theorem (Kumar-Shelah 2017)

Erdés’ problem is independent of ZFC 4+ —CH. More precisely, over a
ground model satisfying GCH:

1. After adding X, many Cohen reals, there is no Wetzel family.

2. There is a cardinal and cofinality preserving forcing extension in
which 280 = R, and there is a Wetzel family.

Question (Kumar-Shelah)

Is a Wetzel family consistent with regular continuum, e.g. 2% = R,?
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Universal sets

An approach suggested by Kumar-Shelah is to make Erd8s’ orginial proof
somehow work.

Definition
We call X C C universal (for entire functions) if | X| < 2% and whenever
|Y| < 2%, there is a non-constant entire

flY] C X.

A universal set let's us construct a Wetzel family.
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Universal sets

An approach suggested by Kumar-Shelah is to make Erd8s’ orginial proof
somehow work.

Definition
We call X C C universal (for entire functions) if | X| < 2% and whenever
|Y| < 2%, there is a non-constant entire

flY] C X.

A universal set let's us construct a Wetzel family.

Lemma
The existence of a universal set implies that 2% js a successor cardinal.
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Universal sets

Theorem (S.-Weinert)

A universal set is consistent with 280 = R,. On the other hand MA
implies that there is no universal set.
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Universal sets

Theorem (S.-Weinert)

A universal set is consistent with 280 = R,. On the other hand MA
implies that there is no universal set.

The forcing uses a proper models-as-side-conditions approach.
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Universal sets

Theorem (S.-Weinert)

A universal set is consistent with 280 = R,. On the other hand MA
implies that there is no universal set.

The forcing uses a proper models-as-side-conditions approach.

Question
Is a universal set consistent with continuum N3?
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Hooray!

Theorem (S.-Weinert)

(GCH) Let k have uncountable cofinality. Then there is a cardinal and
cofinality preserving forcing extension with 2%° = r and a Wetzel family.
Moreover, if k is regular, we can also add MA.
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Hooray!

Theorem (S.-Weinert)

(GCH) Let k have uncountable cofinality. Then there is a cardinal and
cofinality preserving forcing extension with 2%° = r and a Wetzel family.
Moreover, if k is regular, we can also add MA.

Question
Does MA, MA + 2% = X, or PFA imply that there is a Wetzel family?
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Hooray!

Theorem (S.-Weinert)

(GCH) Let k have uncountable cofinality. Then there is a cardinal and
cofinality preserving forcing extension with 2%° = r and a Wetzel family.
Moreover, if k is regular, we can also add MA.

Question
Does MA, MA + 2% = X, or PFA imply that there is a Wetzel family?

Conjecture: PFA works.
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Almost disjointness

Wetzel families actually exhibit a quite interesting combinatorial nature:
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Wetzel families actually exhibit a quite interesting combinatorial nature:

Theorem (The Identity Theorem)

Let f, g be distinct entire functions. Then f and g agree at most at
countably many points (in fact on a set with no accumulation points).

Strong almost disjointness and complex analysis University of Leeds



Almost disjointness

Wetzel families actually exhibit a quite interesting combinatorial nature:

Theorem (The Identity Theorem)

Let f, g be distinct entire functions. Then f and g agree at most at
countably many points (in fact on a set with no accumulation points).

This somewhat motivates Wetzel's original question.
Now suppose for instance that the continuum is A™. Then we can think

of a Wetzel family as a family F of functions f : AT — X so that for all
f# g€ F, fNgis countable.
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Almost disjointness

Wetzel families actually exhibit a quite interesting combinatorial nature:

Theorem (The Identity Theorem)

Let f, g be distinct entire functions. Then f and g agree at most at
countably many points (in fact on a set with no accumulation points).

This somewhat motivates Wetzel's original question.

Now suppose for instance that the continuum is A™. Then we can think
of a Wetzel family as a family F of functions f : AT — X so that for all
f# g€ F, fNgis countable.

More generally, if 2% = x, a Wetzel family gives a “o-almost disjoint”

family 7 C [], <, tta of size k, where p1o, <  for all o < k.
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Almost disjointness

So in order e.g. to answer whether a Wetzel family with continuum of
size N3 is consistent, we must also answer:

Question
Is a o-ad family in wy“? of size w3 consistent at all?
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Almost disjointness

So in order e.g. to answer whether a Wetzel family with continuum of
size N3 is consistent, we must also answer:

Question
Is a o-ad family in wy“? of size w3 consistent at all?

In the proof of our main theorem, we in fact use a preparatory forcing to
first get a positive answer to this question and then force again to add
the entire functions.

In the case of wy, the question has a positive answer in ZFC: There is a
o-ad family in w;“? of size ws.
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Almost disjointness
A very similar question has been asked in the context of a question by
Hajnal:

Question (Hajnal)
How long can chains in (wi™, < /fin) be?

3Here strongly almost disjoint means finite intersection.
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Almost disjointness

A very similar question has been asked in the context of a question by
Hajnal:

Question (Hajnal)

How long can chains in (wi™, < /fin) be?

Zapletal noted the following:

Lemma

If there is a chain of length r + 1 in (Wi, < /fin), then there is a strongly
almost disjoint family® of size K in w*!.

3Here strongly almost disjoint means finite intersection.
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Almost disjointness

A very similar question has been asked in the context of a question by
Hajnal:

Question (Hajnal)

How long can chains in (wi™, < /fin) be?

Zapletal noted the following:

Lemma

If there is a chain of length r + 1 in (Wi, < /fin), then there is a strongly
almost disjoint family® of size K in w*!.

Theorem (Zapletal '98)

Arbitrarily large strongly almost disjoint families in w“' are consistent.
The same is true of w,“rt, for any n € w.

3Here strongly almost disjoint means finite intersection.
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Almost disjointness

A very similar question has been asked in the context of a question by
Hajnal:

Question (Hajnal)

How long can chains in (wi™, < /fin) be?

Zapletal noted the following:

Lemma

If there is a chain of length r + 1 in (Wi, < /fin), then there is a strongly
almost disjoint family® of size K in w*!.

Theorem (Zapletal '98)

Arbitrarily large strongly almost disjoint families in w“' are consistent.
The same is true of w,“rt, for any n € w.

Question (Zapletal '98)
What about w,%«+17?

3Here strongly almost disjoint means finite intersection.
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Hooray!

Theorem (S.-Weinert)

(GCH) Let k have uncountable cofinality and for each o < k, let
1o = max(|a|,Ng). Then there is a cardinal and cofinality preserving
forcing extension with a strongly almost disjoint family of size k in

[Tocs tta and 2% = k.

In particular, for any A, arbitrarily large strongly almost disjoint families
. . +
are consistent in AN
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Hooray!

Theorem (S.-Weinert)

(GCH) Let k have uncountable cofinality and for each o < k, let

1o = max(|a|,Ng). Then there is a cardinal and cofinality preserving
forcing extension with a strongly almost disjoint family of size k in
[Tocs tta and 2% = k.

In particular, for any A, arbitrarily large strongly almost disjoint families
. . +
are consistent in AN

Theorem (S.-Weinert, ?7)

MA implies that there is a strongly almost disjoint family of size wy in
w12,
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Thinning out

The forcing builds on a thinning out trick by Baumgartner.
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Thinning out

The forcing builds on a thinning out trick by Baumgartner.

Theorem (Baumgartner '76)

Let k be an infinite cardinal. Then arbitrarily large strongly almost
disjoint families in [k]" are consistent.
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Thinning out

The forcing builds on a thinning out trick by Baumgartner.

Theorem (Baumgartner '76)

Let k be an infinite cardinal. Then arbitrarily large strongly almost
disjoint families in [k]" are consistent.

Suppose for instance that {A, : @ < A} C [w1]“* is o-ad. Then adding a
strongly ad family {B, : « < A} with B, C A, with finite conditions is
ccc. We are thinning out the A, 's.
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For every regular A < k, (Sx.o : @ < k) is AT-ad, all sections of Sy
after index \ have size \.

() asdap,
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Madness

The technique also leads to the following quite interesting result:

Theorem (S.)

Let k be regular. Then it is consistent that there is a k-mad family (of
arbitrarily large size) that is strongly ad.

l.e. A such that for every X € [k]" there is A € A,
VAg # A € A, AoﬂA1| < w.

ANX| =k and
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Madness

The technique also leads to the following quite interesting result:

Theorem (S.)

Let k be regular. Then it is consistent that there is a k-mad family (of
arbitrarily large size) that is strongly ad.

l.e. A such that for every X € [k]" thereis A€ A, |[ANX| =k and
VAg # A € A, AoﬂA1| < w.
Lemma

Let A C [w1]“* be an (w1-)mad family. Then there is a ccc forcing
adding a refinement of A that is wi-mad and strongly almost disjoint.
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Madness

In fact

Theorem (S.)

MA + 2% = %1 implies that every wi-mad family has a strongly ad
refinement that is wi-mad.
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Madness

In fact

Theorem (S.)

MA + 2% = %1 implies that every wi-mad family has a strongly ad
refinement that is wi-mad.

Question
Is the conclusion consistent for kK > w1?
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Thank you!
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