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Generalized descriptive set theory

A cofinality-indepedent approach

The higher analogue of the classical setting, obtained by replacing w with
k... or cof(x)!

Remark: Let x be an infinite cardinal. Then k<% = k is equivalent to
2<F =k and k regular.

Our setup J

Let x be an uncountable cardinal that satisfies the condition 2<% = k.
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The generalized Cantor and Baire spaces

Let A, i be cardinals, with g infinite and A > 2.
We equip the set #\ = {x | x : u — A} with the bounded topology Tp,
generated by the sets

Ns(FA) :={xetX | sCx}, s € A
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The generalized Cantor and Baire spaces

Let A, i be cardinals, with g infinite and A > 2.
We equip the set A = {x | x : p — A} with the bounded topology Ty,
generated by the sets

Ns(FA) :={xetX | sCx}, s € A

@ Generalized Cantor space J
k2.

SLO principle for Borel subsets of 2 3/45
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Let A, i be cardinals, with g infinite and A > 2.
We equip the set A = {x | x : p — A} with the bounded topology Ty,
generated by the sets

Ns(FA) :={xetX | sCx}, s € A

@ Generalized Cantor space J o Generalized Baire space J

KD cof (k)
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The generalized Cantor and Baire spaces

Let A, i be cardinals, with g infinite and A > 2.

We equip the set A = {x | x : p — A} with the bounded topology Ty,
generated by the sets

Ns(FA) :={xetX | sCx}, s € A

@ Generalized Cantor space o Generalized Baire space
KD J cof (k) J
Theorem
If k is a singular cardinal and 2<% = k , then "2 ~ cof (k) . J
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Wadge Reductions

Definition
Given A, B C “2, let
A<y B

if there exists a continuous f : “2 — “2 such that f~1(B) = A.
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Wadge Reductions

Definition
Given A, B C “2, let
A<w B

if there exists a continuous f : “2 — “2 such that f~1(B) = A.

o Notice that A <yy B if and only if —A <y —B.

@ Continuous reducibility is a transitive and reflexive relation, that is, a
preorder.
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Wadge Hierarchy

Definition
Given A, B C “2, let
A<w B

if there exists a continuous f : “2 — “2 such that f~1(B) = A.

We set:
o A<w B iff A<w B and B £w A.
e A=y B iff A<w B and B <y A.

The equivalence classes induced by <y are called Wadge degrees

[Alw ={B | A=w B}
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Wadge Hierarchy

Definition
Given A, B C “2, let
A<w B

if there exists a continuous f : “2 — “2 such that f~1(B) = A.

We set:
o A<w B iff A<w B and B £w A.
e A=y B iff A<w B and B <y A.

The equivalence classes induced by <y are called Wadge degrees
[Alw ={B | A=w B}

Note that the preorder <y induces a partial order on the Wadge degrees:
We call this partial order the Wadge hierarchy.
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Wadge Hierarchy

Theorem (Martin, Monk) }

<w is well-founded on Bor(“2).
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Wadge Hierarchy

Theorem (Martin, Monk)

<w is well-founded on Bor(“2).

Wadge's Lemma
For all A, B € Bor(¥2),

Ang or WQ\BSV\/A.
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Wadge Hierarchy

Theorem (Martin, Monk)

<w is well-founded on Bor(“2).

Wadge's Lemma
For all A, B € Bor(¥2),

Ang or “’2\B§WA

The Wadge Semi-Linear Ordering principle (SLOY) is the statement:
For all sets A, B C “2

Ang or w2\B§V\/A.

Given T boldface pointclass, we write SLOW(I) if SLOW holds for any
A BerT.
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Wadge game

For any A, B C “2, the Wadge game Gw(A, B) on “2 is:

I ‘xo X1 X
" ‘ Yo P y1

Player Il is allowed to " pass’ at some stages.
Player Il wins the game if y € “2 and x € A<=y € B.
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Wadge game

For any A, B C “2, the Wadge game Gw(A, B) on “2 is:

I ‘xo X1 X
" ‘ Yo P y1

Player Il is allowed to " pass’ at some stages.
Player Il wins the game if y € “2 and x € A<=y € B.

Fact
@ Il has a winning strategy in Gw(A, B) < A <w B.
@ | has a winning strategy in Gw(A, B) = “2\ B <w A.
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Some consequences of SLOW

@ Antichains have size at most 2, and they are of the form
{[Alw, [~Alw} for some A C “2 such that A £y —A. J
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Some consequences of SLOW

@ Antichains have size at most 2, and they are of the form
{[Alw, [~Alw} for some A C “2 such that A £y —A. J
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Some consequences of SLOW

Definition

Let I be a boldface pointclass.
- Aset AC“2is I-hard if for all B € [ (¥2), B <y A.
- The set A is [-complete if it is -hard and A € T'(“2).
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Some consequences of SLOW

Definition

Let I be a boldface pointclass.
- Aset AC “2is I-hard if for all B € [ (“2), B <y A.
- The set A is [-complete if it is -hard and A € T'(“2).

@ Assume SLOW holds. Let T be a non selfdual boldface pointclass,
then

A'is T-complete <= A € I'(“2)\ F(“2).
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Some consequences of SLOW

Definition
Let I be a boldface pointclass.
- Aset AC “2is I-hard if for all B € [ (“2), B <y A.

- The set A is [-complete if it is -hard and A € T'(“2).

@ Assume SLOW holds. Let T be a non selfdual boldface pointclass,

then
Ais [-complete <= A € I'(¥2)\ [(¥2).
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Some consequences of SLOW

Definition

Let I be a boldface pointclass.
- Aset AC “2is I-hard if for all B € [ (“2), B <y A.
- The set A is [-complete if it is -hard and A € T'(“2).

@ Assume SLOYW holds. Let T be a non selfdual boldface pointclass,

then
A'is T-complete <= A € [(“2) \ [(“2). |
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Some consequences of SLOW

Definition

Let I be a boldface pointclass.
- Aset AC “2is I-hard if for all B € [ (“2), B <y A.
- The set A is [-complete if it is -hard and A € T'(“2).

@ Assume SLOYW holds. Let T be a non selfdual boldface pointclass,

then
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Wadge Hierarchy
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Wadge Hierarchy
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Wadge Hierarchy
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Wadge Hierarchy

Beatrice Pitton
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Wadge Hierarchy
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Difference Hierarchy - DTS

0 € Ord can be uniquely written as # = XA+ n with A limit or 0 and n < w.
Definition

Let & > 1 be an ordinal. If (C,),<¢ is a decreasing sequence of subsets of
a set X, we define C = Dy ((GC;)n<p) C X by

v C s x €[Ny Gy Vmin{n <6 [x¢ Cy} isodd  for § odd
x & (Nycop Gy Amin{n <6[x¢&C} isodd for f even
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Definition

Let & > 1 be an ordinal. If (C,),<¢ is a decreasing sequence of subsets of
a set X, we define C = Dy ((GC;)n<p) C X by

v C s x €[Ny Gy Vmin{n <6 [x¢ Cy} isodd  for § odd
x & (Nycop Gy Amin{n <6[x¢&C} isodd for f even
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Difference Hierarchy - DTS

0 € Ord can be uniquely written as # = XA+ n with A limit or 0 and n < w.
Definition

Let § > 1 be an ordinal. If (C,),<g is a decreasing sequence of subsets of
a set X, we define C = Dy ((G;)n<0) € X by

e C s X €(,cp Gy Vmin{n <0 |x¢ Cy} isodd  for ¢ odd
x & (Nycp Gy Amin{n <6 [x¢&Cy} isodd for f even

Consider X = (“2,7). For 1 <6 < wy, we let

Dy (N ) {Do ((Cy)y<o) | G, e n? for every n < 6} .

We also define Dy (M9) to be the dual class of Dy (N?).
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Difference Hierarchy - DTS

Theorem (Hausdorff, Kuratowski)
In every polish space X and for any 1 < o < wy,

aLLa(X) = (J Do (M(X)
1<0<w;
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Difference Hierarchy - GDST

0 € Ord can be uniquely written as # = XA+ n with A limit or 0 and n < w.
Definition

Let § > 1 be an ordinal. If (C,),<g is a decreasing sequence of subsets of
a set X, we define C = Dy ((G;)n<0) € X by

e C s X €(,cp Gy Vmin{n <0 |x¢ Cy} isodd  for ¢ odd
x & (Nycp Gy Amin{n <6 [x¢&Cy} isodd for f even

Consider X = (¥2,73). For 1 <0 < k™, we let

Dy (I'Ig( )) = {Do ((Cy)n<0) | G, € N(k™) for every n < 6} .

We also define Dy (M9(x™)) to be the dual class of Dy (M3(x7T)).
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A counterexample to Hausdorff-Kuratowski in GDST

Theorem

Let X C #2. If Y C X is non-empty, dense and codense in X, then
Y ¢ Do(NY(X, k1)) for any 6 < st.

Consider the sets

X ={xe"2|{a<k|x(a)=1} <N}
and

Yi={xe"2|3dn<wl{a<k|x(a) =1} =2n}.
Define also

Yo=X\Y={xeX|In<wl{a<k]|x(a)=1} =2n+1}
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SLOY in GDST

Definition
Given A, B C 72, let
A<w B

if there exists a continuous f : ®2 — #2 such that f~1(B) = A.

The generalized Wadge Semi-Linear Ordering principle (SLOY) says:
For all sets A, B C *2

AﬁwB or Hz\ngA.
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SLOY in GDST

Definition
Given A, B C #2, let
A<w B

if there exists a continuous f : 2 — %2 such that f~(B) = A.

The generalized Wadge Semi-Linear Ordering principle (SLOZV) says:
For all sets A, B C *2

AﬁwB or K2\B§wA.

However, there is no x-Borel determinacy for xk > w...
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Generalized Gale-Stewart game

Let k, A be cardinals, with « infinite and A > 2.

Given A C *), the generalized Gale-Stewart game G(A) is
| H ag ar a.
1 H a1 as s dw+1

Let a:= (ag, a1, ..., aw, -..) € “A. Player | wins if a € A and Il wins if
ad A
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Generalized Gale-Stewart game

Let k, A be cardinals, with « infinite and A > 2.
Given A C *), the generalized Gale-Stewart game G(A) is
| H ag an a,
1 H a1 as s dw+1
Let a:= (ag, a1, ..., aw, -..) € “A. Player | wins if a € A and Il wins if
ad A

Fact

Let k > w and let A C “2. Then, there is an extension A C %2 of A such
that A € A%(x™1) and G2(A) is equivalent to G2(A).
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Generalized Gale-Stewart game

Let k, A be cardinals, with « infinite and A > 2.
Given A C *), the generalized Gale-Stewart game G(A) is
| H ag an a,
1 H a1 as s dw+1
Let a:= (ag, a1, ..., aw, -..) € “A. Player | wins if a € A and Il wins if
ad A

Fact

Let k > w and let A C “2. Then, there is an extension A C %2 of A such
that A € A%(x™1) and G2(A) is equivalent to G2(A).

_A’ = USNS CMls)zw A SeAK
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SINGULAR CASE
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SLOY when & is singular

Theorem (Motto Ros, Schlicht)
(AC). Let X be an uncountable ultrametric Polish space. Then there is a
map ¢ : P(w) — P(X) such that for all a,b Cw

1. if a C b, then ¢(a) <p ¥(b);

2. if 1(a) <gor(x) ¥(b), then a C b.

In particular, (P(w), C) embeds into the F-hierarchy on X for every
reducibility L C F C Bor(X).
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SLOY when & is singular

Theorem (Motto Ros, Schlicht)

(AC). Let X be an uncountable ultrametric Polish space. Then there is a
map ¢ : P(w) — P(X) such that for all a,b Cw

1. if a C b, then ¢(a) <p ¥(b);
2. if 1/)(8) SBOI’(X) w(b), then a g b.

In particular, (P(w), C) embeds into the F-hierarchy on X for every
reducibility L C F C Bor(X).

Theorem (Motto Ros, P., Schlicht)

Let £ > w with cof(x) = w. Then, (P(w),C) embeds into the
W-hierarchy on the A9(kt) subsets of “r.
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SLOY when & is singular

Theorem (Motto Ros, P., Schlicht)

Let 1 be an uncountable cardinal s.t. u<# = u. Then, there is a map
z/) : P(u) — P(*u) such that for all a,b C p

. if a C b, then 9(a) < ¥(b);
- if ¥(a) <gor(u+) ¥(b), then a C b.

In partlcular, (P(u), €) embeds into the F-hierarchy on #u for every
reducibility L C F C Bor(u™).

Theorem (Motto Ros, P., Schlicht)

Let x be a singular cardinal. Then (P(cof(x)), C) embeds into the
W-hierarchy on the AS(k) subsets of <f(%).
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- if ¥(a) <gor(u+) ¥(b), then a C b.

In partlcular, (P(u), €) embeds into the F-hierarchy on #u for every
reducibility L C F C Bor(u™).
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W-hierarchy on the AS(k) subsets of <f(%).
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REGULAR CASE
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Definition
Let 7 C <®X\ with A € {2, x}.
@ 7 is pruned if for every s € T there exists x € [T] such that s C x.

@ 7T is < k-closed if every increasing sequence in T of length < k has
an upper bound in T,

A node s € T is splitting if there are two incomparable t,t' € T
extending s. The tree T is splitting if every node s € T is splitting.

T is k-perfect if it is < x-closed and cofinally splitting, i.e. if for
every t € T there exists a splitting node u € 7 with t C u.

A subset Y of “X is k-perfect if Y = [T] with T a x-perfect tree.

A subset A of ®\ has the perfect set property if | A |< k or A has a
k-perfect subset.

(]
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper X3(x*)-sets which are not
¥9(kT)-complete. Hence, SLOW(X3(xT)) fails.
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper X3(x*)-sets which are not
¥9(kT)-complete. Hence, SLOW(X3(xT)) fails.

Proof:

e T< 2 k. L [T\ s wDoire

. K:(l \‘\Q.$ e 5@‘0‘*@& P{'S

. T s o opeds s,
ek S be o w-porkds \wee
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SLOY when & is regular

Theorem (Liicke, Motto Ros, Schlicht)

Assume V = L. If k is an uncountable regular cardinal, then there is a
closed subset of "k that does not satisfy the Hurewicz dichotomy.

Proposition (Liicke, Motto Ros, Schlicht)

Let 7 C <"k be a pruned subtree with the following three properties:
1. T does not contain a perfect subtree;
2. the closed set [T] is k-Baire,
3. every node in T is k-splitting.

Then the closed set [T] does not satisfy the Hurewicz dichotomy.
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper X3(x*)-sets which are not
¥9(kT)-complete. Hence, SLOW(X3(xT)) fails.

Proof:

e T< 2 k. L [T\ s wDoire

. K:(l \(\05 e 5@‘0‘*@& P{'S

. T s (e wporeds siohve,
ek S be o w-porkds \wee

Noe S Rk xse[S) st sshg 7 A=3x$ : 5653
NoeT Pk xelT) sk tete ~ @:ﬁ\/\b:be‘vj
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper X3(x*)-sets which are not
¥9(kT)-complete. Hence, SLOW(X3(xT)) fails.

Proof:

W T2 k. (1) s wDoire

. K’—(B \nas 0o isdaked pts

. T s v wpededs siohve,
ek S he a w-porkds R

oo S Rk xje[sl sh s2he ™~ A= 3 X * 3653
NoeT Pk xelT) sbe bete ”V‘E5=ﬁ$b*beTj
Noke b @ ABe 27, () )
I P devse ol cpdIRSR N V%(LS]/EY:J
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper £3(x*)-sets which are not
9(kT)-complete. Hence, SLOW(Z3(xT)) fails.

Proof:

Fact

Let C be a closed set, |C| > &, such that C is k-Baire and there is B C C,
A € X9(kT) dense and codense in C. Then, B is a proper £3(xT)-set.
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper X3(x*)-sets which are not
¥9(kT)-complete. Hence, SLOW(X3(xT)) fails.

Proof:
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper X3(x*)-sets which are not
¥9(kT)-complete. Hence, SLOW(X3(xT)) fails.

Clawk -, A?z/w ®.
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SLOY when & is regular

Theorem (Andretta)
SLOW —> PSP.

Theorem (Motto Ros, P., Schlicht)
Assume that PSP, (M9(x%)). Then, SLOY implies PSP,.
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)
Assume that PSP, (M9(x*)). Then, SLOY implies PSP,..
Proof: Let X C “2 and

G={xe"2|Va<kdf>ax(s)=0)}
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)
Assume that PSP, (M9(x*)). Then, SLOY implies PSP,..
Proof: Let X C “2 and

G={xe"2|Va<kdf>ax(s)=0)}
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)
Assume that PSP, (M9(x*)). Then, SLOY implies PSP,..
Proof: Let X C “2 and

G={xe"2|Va<kdf>ax(s)=0)}
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SLOY when & is regular

Theorem (Motto Ros, P., Schlicht)
Assume that PSP, (M9(x*)). Then, SLOY implies PSP,..
Proof: Let X C “2 and

G={xe"2|Va<kdf>ax(s)=0)}
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SLOY when & is regular

Let G = {x € "2 | Vae < k3B > a(x(B) = 0)}.
Theorem (Schlicht, Sziraki)

After a Levy-collapse of an inaccessible to xT, the following analogue of
the Kechris-Louveau-Woodin dichotomy holds for all disjoint definable
subsets X, Y C “k:

Either there is a X3(xT) set A separating X from Y, i.e. X C A and

Y NA =0 or there is a homeomorphism f from ¥2 onto a closed subset of
"k such that f(G) C X and f("2\ G) C Y.

It is consistent that every proper X3(x*)-set is E3(x)-complete.
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SLOY when & is regular

Let G = {x € "2 | Vae < k3B > a(x(B) = 0)}.
Theorem (Schlicht, Sziraki)

After a Levy-collapse of an inaccessible to xT, the following analogue of
the Kechris-Louveau-Woodin dichotomy holds for all disjoint definable
subsets X, Y C “k:

Either there is a X3(xT) set A separating X from Y, i.e. X C A and

Y NA =0 or there is a homeomorphism f from ¥2 onto a closed subset of
“k such that f(G) C X and f("2\ G) C Y.

It is consistent that every proper X3(x*)-set is E3(x)-complete.

Question
Is it consistent that SLOYW(Z3(x1)) holds?
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How far SLOY holds

Fact 1
SLOY(A9(k1)) holds. J

kk ABe AT(K). Aswne ABP4¢§p 2] = be™

J ce 2B
Sek 42 =2

s o xeh
< o thexruwise
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How far SLOY holds

Fact 1
SLOY(A9(k1)) holds.

Fact 2
Let C C*2. If C € M¥(xt)\ E(kT), then C is NI(kT)-complete. J

leb <2, CeTibINET(K) and DeTR(). & *<IC.
We. \M Déwc- Condax G\W(‘U,C)‘.
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How far SLOY holds

Fact 1
SLOW(AI(kT)) holds.

Fact 2
Let C C*2. If C € M¥(xt)\ E9(kT), then C is NI(kT)-complete.

Fact 3

Let I be a non selfdual boldface pointclass. If:
1. SLOW(r nT) holds
2. Ais M-complete <= Ac T \T

then, SLOW(T) holds.

Hence, SLOY(Z9(xT)) and SLOW(N?(x)) hold.
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How far SLOY holds
Structure of our work for 6 > 1:
1. Show that SLOY(T) holds for I = Dy(NM3(xT)) N Da(M¥(x)).
2. Every proper Dy(MN9(xt))-subset C C #2 is Dy(M%(x))-complete.

3. SLOW(Dy(NY(xT))) holds.
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How far SLOY holds

Structure of our work for 6 > 1:
1. Show that SLOY(T) holds for I = Dy(NM3(xT)) N Da(M¥(x)).
2. Every proper Dy(MN9(xt))-subset C C #2 is Dy(M%(x))-complete.

3. SLOW(Dy(NY(xT))) holds.

Thank you!
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