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Generalized descriptive set theory

A cofinality-indepedent approach

The higher analogue of the classical setting, obtained by replacing ω with
κ... or cof(κ)!

Remark: Let κ be an infinite cardinal. Then κ<κ = κ is equivalent to
2<κ = κ and κ regular.

Our setup

Let κ be an uncountable cardinal that satisfies the condition 2<κ = κ.
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The generalized Cantor and Baire spaces

Let λ, µ be cardinals, with µ infinite and λ ≥ 2.
We equip the set µλ = {x | x : µ→ λ} with the bounded topology τb,
generated by the sets

Ns(
µλ) := { x ∈ µλ | s ⊆ x } , s ∈ <µλ.

Generalized Cantor space
κ2.

Generalized Baire space
cof(κ)κ.

Theorem

If κ is a singular cardinal and 2<κ = κ , then κ2 ≈ cof(κ)κ.
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Wadge Reductions

Definition

Given A,B ⊆ ω2, let
A ≤W B

if there exists a continuous f : ω2 → ω2 such that f −1(B) = A.

Notice that A ≤W B if and only if ¬A ≤W ¬B.
Continuous reducibility is a transitive and reflexive relation, that is, a
preorder.
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Wadge Hierarchy

Definition

Given A,B ⊆ ω2, let
A ≤W B

if there exists a continuous f : ω2 → ω2 such that f −1(B) = A.

We set:

A <W B iff A ≤W B and B ̸≤W A.

A ≡W B iff A ≤W B and B ≤W A.

The equivalence classes induced by ≤W are called Wadge degrees

[A]W = {B | A ≡W B}

Note that the preorder ≤W induces a partial order on the Wadge degrees:
We call this partial order the Wadge hierarchy.
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Wadge Hierarchy

Theorem (Martin, Monk)

≤W is well-founded on Bor(ω2).

Wadge’s Lemma

For all A,B ∈ Bor(ω2),

A ≤W B or ω2 \ B ≤W A.

The Wadge Semi-Linear Ordering principle (SLOW) is the statement:
For all sets A,B ⊆ ω2

A ≤W B or ω2 \ B ≤W A.

Given Γ boldface pointclass, we write SLOW(Γ) if SLOW holds for any
A,B ∈ Γ.
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Wadge game

For any A,B ⊆ ω2, the Wadge game GW(A,B) on ω2 is:

I x0 x1 x2 · · ·
II y0 P y1 · · ·

Player II is allowed to ”pass” at some stages.
Player II wins the game if y ∈ ω2 and x ∈ A ⇐⇒ y ∈ B.

Fact

II has a winning strategy in GW(A,B) ⇐⇒ A ≤W B.

I has a winning strategy in GW(A,B) =⇒ ω2 \ B ≤W A.
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Some consequences of SLOW

Antichains have size at most 2, and they are of the form
{[A]W, [¬A]W} for some A ⊆ ω2 such that A ̸≤W ¬A.
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Some consequences of SLOW

Definition

Let Γ be a boldface pointclass.

- A set A ⊆ ω2 is Γ-hard if for all B ∈ Γ (ω2), B ≤W A.

- The set A is Γ-complete if it is Γ-hard and A ∈ Γ(ω2).

Assume SLOW holds. Let Γ be a non selfdual boldface pointclass,
then

A is Γ-complete ⇐⇒ A ∈ Γ(ω2) \ Γ̆(ω2).
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Wadge Hierarchy
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Wadge Hierarchy
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Difference Hierarchy - DTS

θ ∈ Ord can be uniquely written as θ = λ+ n with λ limit or 0 and n < ω.

Definition

Let θ ≥ 1 be an ordinal. If (Cη)η<θ is a decreasing sequence of subsets of
a set X , we define C = Dθ ((Cη)η<θ) ⊆ X by

x ∈ C ⇐⇒

{
x ∈

⋂
η<θ Cη ∨min {η < θ | x /∈ Cη} is odd for θ odd

x /∈
⋂

η<θ Cη ∧min {η < θ | x /∈ Cη} is odd for θ even
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a set X , we define C = Dθ ((Cη)η<θ) ⊆ X by

x ∈ C ⇐⇒

{
x ∈

⋂
η<θ Cη ∨min {η < θ | x /∈ Cη} is odd for θ odd

x /∈
⋂

η<θ Cη ∧min {η < θ | x /∈ Cη} is odd for θ even

Consider X = (ω2, τ). For 1 ≤ θ < ω1, we let

Dθ

(
Π0

1

)
=

{
Dθ ((Cη)η<θ) | Cη ∈ Π0

1 for every η < θ
}
.

We also define Ďθ

(
Π0

1

)
to be the dual class of Dθ

(
Π0

1

)
.
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Difference Hierarchy - DTS

Theorem (Hausdorff, Kuratowski)

In every polish space X and for any 1 ≤ α < ω1,

∆0
α+1(X ) =

⋃
1≤θ<ω1

Dθ

(
Π0

α(X )
)
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Difference Hierarchy - GDST

θ ∈ Ord can be uniquely written as θ = λ+ n with λ limit or 0 and n < ω.

Definition

Let θ ≥ 1 be an ordinal. If (Cη)η<θ is a decreasing sequence of subsets of
a set X , we define C = Dθ ((Cη)η<θ) ⊆ X by

x ∈ C ⇐⇒

{
x ∈

⋂
η<θ Cη ∨min {η < θ | x /∈ Cη} is odd for θ odd

x /∈
⋂

η<θ Cη ∧min {η < θ | x /∈ Cη} is odd for θ even

Consider X = (κ2, τb). For 1 ≤ θ < κ+, we let

Dθ

(
Π0

1(κ
+)

)
=

{
Dθ ((Cη)η<θ) | Cη ∈ Π0

1(κ
+) for every η < θ

}
.

We also define Ďθ

(
Π0

1(κ
+)

)
to be the dual class of Dθ

(
Π0

1(κ
+)

)
.
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A counterexample to Hausdorff-Kuratowski in GDST

Theorem

Let X ⊆ κ2. If Y ⊆ X is non-empty, dense and codense in X , then
Y /∈ Dθ(Π

0
1(X , κ

+)) for any θ < κ+.

Consider the sets

X := {x ∈ κ2 | |{α < κ | x(α) = 1}| < ℵ0}

and
Y := {x ∈ κ2 | ∃n < ω|{α < κ | x(α) = 1}| = 2n}.

Define also

Y c := X \ Y = {x ∈ X | ∃n < ω|{α < κ | x(α) = 1}| = 2n + 1}
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SLOW in GDST

Definition

Given A,B ⊆ κ2, let
A ≤W B

if there exists a continuous f : κ2 → κ2 such that f −1(B) = A.

The generalized Wadge Semi-Linear Ordering principle (SLOW
κ ) says:

For all sets A,B ⊆ κ2

A ≤W B or κ2 \ B ≤W A.

However, there is no κ+-Borel determinacy for κ > ω...
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Generalized Gale-Stewart game

Let κ, λ be cardinals, with κ infinite and λ ≥ 2.
Given A ⊆ κλ, the generalized Gale-Stewart game Gλ

κ (A) is

I a0 a2 · · · aω · · ·
II a1 a3 · · · aω+1 · · ·

Let a := ⟨a0, a1, ..., aω, ...⟩ ∈ κλ. Player I wins if a ∈ A and II wins if
a ̸∈ A.

Fact

Let κ > ω and let A ⊆ ω2. Then, there is an extension A ⊆ κ2 of A such
that A ∈ ∆0

1(κ
+) and G 2

κ(A) is equivalent to G 2
ω(A).
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SINGULAR CASE
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SLOW
κ when κ is singular

Theorem (Motto Ros, Schlicht)

(AC). Let X be an uncountable ultrametric Polish space. Then there is a
map ψ : P(ω) → P(X ) such that for all a, b ⊆ ω

1. if a ⊆ b, then ψ(a) ≤L ψ(b);

2. if ψ(a) ≤Bor(X ) ψ(b), then a ⊆ b.

In particular, (P(ω),⊆) embeds into the F-hierarchy on X for every
reducibility L ⊆ F ⊆ Bor(X ).

Theorem (Motto Ros, P., Schlicht)

Let κ > ω with cof(κ) = ω. Then, (P(ω),⊆) embeds into the
W-hierarchy on the ∆0

2(κ
+) subsets of ωκ.
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SLOW
κ when κ is singular

Theorem (Motto Ros, P., Schlicht)

Let µ be an uncountable cardinal s.t. µ<µ = µ. Then, there is a map
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REGULAR CASE
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Definition

Let T ⊆ <κλ with λ ∈ {2, κ}.
T is pruned if for every s ∈ T there exists x ∈ [T ] such that s ⊆ x .

T is < κ-closed if every increasing sequence in T of length < κ has
an upper bound in T ,

A node s ∈ T is splitting if there are two incomparable t, t ′ ∈ T
extending s. The tree T is splitting if every node s ∈ T is splitting.

T is κ-perfect if it is < κ-closed and cofinally splitting, i.e. if for
every t ∈ T there exists a splitting node u ∈ T with t ⊆ u.

A subset Y of κλ is κ-perfect if Y = [T ] with T a κ-perfect tree.

A subset A of κλ has the perfect set property if | A |≤ κ or A has a
κ-perfect subset.
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SLOW
κ when κ is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper Σ0
2(κ

+)-sets which are not
Σ0

2(κ
+)-complete. Hence, SLOW

κ (Σ0
2(κ

+)) fails.

Proof:
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SLOW
κ when κ is regular

Theorem (Lücke, Motto Ros, Schlicht)

Assume V = L. If κ is an uncountable regular cardinal, then there is a
closed subset of κκ that does not satisfy the Hurewicz dichotomy.

Proposition (Lücke, Motto Ros, Schlicht)

Let T ⊆ <κκ be a pruned subtree with the following three properties:

1. T does not contain a perfect subtree;

2. the closed set [T ] is κ-Baire,

3. every node in T is κ-splitting.

Then the closed set [T ] does not satisfy the Hurewicz dichotomy.
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SLOW
κ when κ is regular

Theorem (Motto Ros, P., Schlicht)

Assume V = L. Then, there are proper Σ0
2(κ

+)-sets which are not
Σ0

2(κ
+)-complete. Hence, SLOW

κ (Σ0
2(κ

+)) fails.

Proof:

Fact

Let C be a closed set, |C | > κ, such that C is κ-Baire and there is B ⊆ C,
A ∈ Σ0

2(κ
+) dense and codense in C. Then, B is a proper Σ0

2(κ
+)-set.
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SLOW
κ when κ is regular

Theorem (Andretta)

SLOW =⇒ PSP.

Theorem (Motto Ros, P., Schlicht)

Assume that PSPκ(Π
0
1(κ

+)). Then, SLOW
κ implies PSPκ.
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SLOW
κ when κ is regular

Theorem (Motto Ros, P., Schlicht)

Assume that PSPκ(Π
0
1(κ

+)). Then, SLOW
κ implies PSPκ.

Proof: Let X ⊆ κ2 and

G = {x ∈ κ2 | ∀α < κ∃β > α(x(β) = 0)}
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SLOW
κ when κ is regular

Let G = {x ∈ κ2 | ∀α < κ∃β > α(x(β) = 0)}.

Theorem (Schlicht, Sziraki)

After a Levy-collapse of an inaccessible to κ+, the following analogue of
the Kechris-Louveau-Woodin dichotomy holds for all disjoint definable
subsets X ,Y ⊆ κκ:
Either there is a Σ0

2(κ
+) set A separating X from Y, i.e. X ⊆ A and

Y ∩ A = ∅ or there is a homeomorphism f from κ2 onto a closed subset of
κκ such that f (G) ⊆ X and f (κ2 \G) ⊆ Y .

It is consistent that every proper Σ0
2(κ

+)-set is Σ0
2(κ

+)-complete.

Question

Is it consistent that SLOW
κ (Σ0

2(κ
+)) holds?
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How far SLOW
κ holds

Fact 1

SLOW
κ (∆0

1(κ
+)) holds.
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How far SLOW
κ holds

Fact 1

SLOW
κ (∆0

1(κ
+)) holds.

Fact 2

Let C ⊆ κ2. If C ∈ Π0
1(κ

+) \Σ0
1(κ

+), then C is Π0
1(κ

+)-complete.
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κ (∆0

1(κ
+)) holds.

Fact 2

Let C ⊆ κ2. If C ∈ Π0
1(κ

+) \Σ0
1(κ

+), then C is Π0
1(κ

+)-complete.

Fact 3

Let Γ be a non selfdual boldface pointclass. If:

1. SLOW(Γ ∩ Γ̌) holds

2. A is Γ-complete ⇐⇒ A ∈ Γ \ Γ̌
then, SLOW(Γ) holds.

Hence, SLOW
κ (Σ0

1(κ
+)) and SLOW

κ (Π0
1(κ

+)) hold.
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How far SLOW
κ holds

Structure of our work for θ > 1:

1. Show that SLOW
κ (Γ) holds for Γ = Dθ(Π

0
1(κ

+)) ∩ Ďθ(Π
0
1(κ

+)).

2. Every proper Dθ(Π
0
1(κ

+))-subset C ⊆ κ2 is Dθ(Π
0
1(κ

+))-complete.

3. SLOW
κ (Dθ(Π

0
1(κ

+))) holds.

Thank you!
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