Uniformization results and Feldman-Moore Theorem in generalized descriptive set theory

Luca Motto Ros

Department of Mathematics "G. Peano" University of Turin, Italy luca.mottoros@unito.it https://sites.google.com/site/lucamottoros/

Workshop "Generalised Baire Space and Large Cardinals" Bristol, February 8–10, 2024

Uniformization theorems

Given $P \subseteq X \times Y$, a uniformization of P is a subset $P^* \subseteq P$ such that for all $x \in X$

$$\exists y P(x,y) \iff \exists ! y P^*(x,y).$$

Equivalently, P^* is the graph of a function f (called **uniformizing** function) with domain $\operatorname{proj}_X(P)$ such that $f(x) \in P_x$ for every $x \in A$.

Fact

Let X, Y be standard Borel spaces. A set $P \subseteq X \times Y$ has a Borel uniformization if and only if $\operatorname{proj}_X(P)$ is Borel and there is a Borel uniformizing function $f : \operatorname{proj}_X(P) \to Y$ for P.

Fact

Let X, Y be standard Borel spaces. A set $P \subseteq X \times Y$ has a Borel uniformization if and only if $\operatorname{proj}_X(P)$ is Borel and there is a Borel uniformizing function $f : \operatorname{proj}_X(P) \to Y$ for P.

It is easy to show that there are Borel sets without Borel uniformizations.

General theme

Suppose that X, Y are Polish or standard Borel spaces, and that $P \subseteq X \times Y$ is Borel. Under which conditions there is a Borel uniformization of P?

Fact

Let X, Y be standard Borel spaces. A set $P \subseteq X \times Y$ has a Borel uniformization if and only if $\operatorname{proj}_X(P)$ is Borel and there is a Borel uniformizing function $f : \operatorname{proj}_X(P) \to Y$ for P.

It is easy to show that there are Borel sets without Borel uniformizations.

General theme

Suppose that X, Y are Polish or standard Borel spaces, and that $P \subseteq X \times Y$ is Borel. Under which conditions there is a Borel uniformization of P?

Today we are interested in "small section" uniformization results: if all the vertical sections of P are sufficiently small, then there is a Borel uniformization of P.

Let X, Y be standard Borel spaces, and $P \subseteq X \times Y$ a Borel set with countable vertical sections. Then $P = \bigcup_{n \in \omega} P_n$ with each P_n a Borel set with vertical sections of size 1.

Let X, Y be standard Borel spaces, and $P \subseteq X \times Y$ a Borel set with countable vertical sections. Then $P = \bigcup_{n \in \omega} P_n$ with each P_n a Borel set with vertical sections of size 1. Therefore P has a Borel uniformization.

Let X, Y be standard Borel spaces, and $P \subseteq X \times Y$ a Borel set with countable vertical sections. Then $P = \bigcup_{n \in \omega} P_n$ with each P_n a Borel set with vertical sections of size 1. Therefore P has a Borel unifomization.

Theorem (???)

Let X be a standard Borel space, Y a Polish space, and $P \subseteq X \times Y$ a Borel set with compact vertical sections P_x . Then the map $x \mapsto P_x$ from X to K(Y) (endowed with the Vietoris topology) is Borel.

Let X, Y be standard Borel spaces, and $P \subseteq X \times Y$ a Borel set with countable vertical sections. Then $P = \bigcup_{n \in \omega} P_n$ with each P_n a Borel set with vertical sections of size 1. Therefore P has a Borel unifomization.

Theorem (???)

Let X be a standard Borel space, Y a Polish space, and $P \subseteq X \times Y$ a Borel set with compact vertical sections P_x . Then the map $x \mapsto P_x$ from X to K(Y) (endowed with the Vietoris topology) is Borel. Therefore P has a Borel uniformization.

Let X, Y be standard Borel spaces, and $P \subseteq X \times Y$ a Borel set with countable vertical sections. Then $P = \bigcup_{n \in \omega} P_n$ with each P_n a Borel set with vertical sections of size 1. Therefore P has a Borel unifomization.

Theorem (???)

Let X be a standard Borel space, Y a Polish space, and $P \subseteq X \times Y$ a Borel set with compact vertical sections P_x . Then the map $x \mapsto P_x$ from X to K(Y) (endowed with the Vietoris topology) is Borel. Therefore P has a Borel uniformization.

Theorem (Arsenin-Kunugui)

Let X be a standard Borel space, Y a Polish space, and $P \subseteq X \times Y$ a Borel set whose vertical sections P_x are σ -compact (= countable unions of compact sets). Then P has a Borel uniformization.

L. Motto Ros (Turin, Italy)

Uniformization in GDST

Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a **countable Borel equivalence relation** (CBER) if it is Borel as a subset of X^2 , and all its equivalence classes are countable.

Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a **countable Borel equivalence relation** (CBER) if it is Borel as a subset of X^2 , and all its equivalence classes are countable.

Feldman-Moore Theorem

Let E be an equivalence relation on a standard Borel space X. Then E is a CBER if and only if it is the orbit equivalence relation induced by a Borel action of a countable (discrete) group G on X.

Equivalently: E is CBER if and only if there is a countable group G acting on X by Borel isomorphisms (in fact, involutions) which generates E.

Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a **countable Borel equivalence relation** (CBER) if it is Borel as a subset of X^2 , and all its equivalence classes are countable.

Feldman-Moore Theorem

Let E be an equivalence relation on a standard Borel space X. Then E is a CBER if and only if it is the orbit equivalence relation induced by a Borel action of a countable (discrete) group G on X.

Equivalently: E is CBER if and only if there is a countable group G acting on X by Borel isomorphisms (in fact, involutions) which generates E.

The importance of this theorem in descriptive set theory cannot be underestimated!

[Study of CBERs, Borel combinatorics, definable paradoxical decompositions, ...]

A CBER E is hyperfinite if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

• Any CBER that admits a Borel transversal is hyperfinite. [Easy application of the Feldman-Moore Theorem.]

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

- Any CBER that admits a Borel transversal is hyperfinite. [Easy application of the Feldman-Moore Theorem.]
- Every CBER on a Polish space is hyperfinite on a comeager set.

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

- Any CBER that admits a Borel transversal is hyperfinite. [Easy application of the Feldman-Moore Theorem.]
- Every CBER on a Polish space is hyperfinite on a comeager set.

There are CBERs which are not hyperfinite.
 [Consider e.g. the shift-action of 𝔽₂ on 2𝔽₂. More generally, every non-amenable countable group admits a Borel action on a standard Borel space which induces a non-hyperfinite CBER.]

A CBER E is **hyperfinite** if it can be written as a countable increasing union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

- Any CBER that admits a Borel transversal is hyperfinite. [Easy application of the Feldman-Moore Theorem.]
- Every CBER on a Polish space is hyperfinite on a comeager set.
- There are CBERs which are not hyperfinite.
 [Consider e.g. the shift-action of F₂ on 2^{F₂}. More generally, every non-amenable countable group admits a Borel action on a standard Borel space which induces a non-hyperfinite CBER.]

Weiss' conjecture

Any Borel action of a countable amenable group on a standard Borel space induces a hyperfinite CBER.

L. Motto Ros (Turin, Italy)

Uniformization in GDST

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

In all definitions, ω must be replaced by κ of $cof(\kappa)$:

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

In all definitions, ω must be replaced by κ of $cof(\kappa)$:

 $\begin{array}{rcl} \mathsf{Cantor space} & {}^{\omega}2 & \rightsquigarrow & \mathsf{generalized Cantor space} & {}^{\kappa}2 \\ \mathsf{Baire space} & {}^{\omega}\omega & \rightsquigarrow & \mathsf{generalized Baire space} & {}^{\mathrm{cof}(\kappa)}\kappa \\ & \mathsf{Borel} & \rightsquigarrow & \kappa^+\text{-}\mathsf{Borel} \end{array}$

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

In all definitions, ω must be replaced by κ of $cof(\kappa)$:

Cantor space $^\omega 2$	\rightsquigarrow	generalized Cantor space $^{\kappa}2$
Baire space $^\omega\omega$	$\sim \rightarrow$	generalized Baire space ${}^{\mathrm{cof}(\kappa)}\kappa$
Borel	\rightsquigarrow	κ^+ -Borel
countable	\rightsquigarrow	of size $\leq \kappa$? or $\leq cof(\kappa)$?
finite	\rightsquigarrow	of size $<\kappa$ (i.e. " κ -small")? or $< cof(\kappa)$?
compact	\rightsquigarrow	κ -Lindelöf? or $cof(\kappa)$ -Lindelöf?

...and so on.

Let κ be an uncountable cardinal such that $2^{<\kappa} = \kappa$.

In all definitions, ω must be replaced by κ of $cof(\kappa)$:

Cantor space $^\omega 2$	\rightsquigarrow	generalized Cantor space $^{\kappa}2$
Baire space $^\omega\omega$	\rightsquigarrow	generalized Baire space $^{\mathrm{cof}(\kappa)}\kappa$
Borel	\rightsquigarrow	κ^+ -Borel
countable	\rightsquigarrow	of size $\leq \kappa$? or $\leq cof(\kappa)$?
finite	\rightsquigarrow	of size $<\kappa$ (i.e. " κ -small")? or $< \mathrm{cof}(\kappa)$?
compact	\rightsquigarrow	κ -Lindelöf? or $cof(\kappa)$ -Lindelöf?

...and so on.

Can we have "small section" uniformization results and/or an analogue of the Feldman-Moore theorem in GDST?

L. Motto Ros (Turin, Italy)

Uniformization in GDST

Assume that $\kappa > \omega$ is regular.

Assume that $\kappa > \omega$ is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on ${}^{\kappa}2$ induced by a ${}^{\kappa+}$ -Borel action of a (discrete) group of size at most κ , then $E \leq_B^{\kappa} E_0^{\kappa}$, where E_0^{κ} is defined on 2^{κ} by $x E_0^{\kappa} y \iff \exists \alpha < \kappa \forall \beta \ge \alpha (x(\beta) = y(\beta)).$

Assume that $\kappa > \omega$ is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on κ^2 induced by a κ^+ -Borel action of a (discrete) group of size at most κ , then $E \leq_B^{\kappa} E_0^{\kappa}$, where E_0^{κ} is defined on 2^{κ} by $x E_0^{\kappa} y \iff \exists \alpha < \kappa \forall \beta \ge \alpha (x(\beta) = y(\beta)).$

Moreover, since κ is uncountable every orbit equivalence relation induced by a $\leq \kappa$ -sized discrete group is **hyper**- κ -**small**, i.e. it can be written as an increasing union of size κ of κ^+ -Borel equivalence relation which are κ -small (= all their classes have size $< \kappa$).

Assume that $\kappa > \omega$ is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on κ^2 induced by a κ^+ -Borel action of a (discrete) group of size at most κ , then $E \leq_B^{\kappa} E_0^{\kappa}$, where E_0^{κ} is defined on 2^{κ} by $x E_0^{\kappa} y \iff \exists \alpha < \kappa \forall \beta \ge \alpha (x(\beta) = y(\beta)).$

Moreover, since κ is uncountable every orbit equivalence relation induced by a $\leq \kappa$ -sized discrete group is **hyper**- κ -**small**, i.e. it can be written as an increasing union of size κ of κ^+ -Borel equivalence relation which are κ -small (= all their classes have size $< \kappa$). However:

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

Assume V = L. Then there is a κ^+ -Borel equivalence relation E whose classes have size 2 which is not induced by a κ^+ -Borel action of a (discrete) group of size $\leq \kappa$.

L. Motto Ros (Turin, Italy)

Uniformization in GDST

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f: \kappa_2 \to \kappa_2$ whose graph $P \subseteq \kappa_2 \times \kappa_2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f: {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

Open problems (?)

Let $\kappa > \omega$ be regular and such that $2^{<\kappa} = \kappa$.

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f: {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

Open problems (?)

Let $\kappa > \omega$ be regular and such that $2^{<\kappa} = \kappa$.

• Is it consistent that the generalized Feldman-Moore Theorem holds for equivalence relations on $^{\kappa}2?$

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f: {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

Open problems (?)

Let $\kappa > \omega$ be regular and such that $2^{<\kappa} = \kappa$.

- Is it consistent that the generalized Feldman-Moore Theorem holds for equivalence relations on ^κ2?
- Is there a κ⁺-Borel equivalence relation on ^κ2 with classes of size at most κ which is not κ⁺-Borel reducible to E^κ₀?

One can also easily observe that no "small section" uniformization result can hold if we formulate it in terms of *uniformizing functions*.

Fact

There is a function $f: {}^{\kappa}2 \to {}^{\kappa}2$ whose graph $P \subseteq {}^{\kappa}2 \times {}^{\kappa}2$ is κ^+ -Borel, yet f is not κ^+ -Borel itself.

Open problems (?)

Let $\kappa > \omega$ be regular and such that $2^{<\kappa} = \kappa$.

- Is it consistent that the generalized Feldman-Moore Theorem holds for equivalence relations on ^κ2?
- Is there a κ⁺-Borel equivalence relation on ^κ2 with classes of size at most κ which is not κ⁺-Borel reducible to E^κ₀?
- So Can we have (at least consistently) "small section" uniformization results for κ^+ -Borel subsets of κ^2 ?

From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit). From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

For such a λ , GDST becomes the theory of λ -Polish spaces (= completely metrizable spaces of weight $\leq \lambda$).

From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

For such a λ , GDST becomes the theory of λ -Polish spaces (= completely metrizable spaces of weight $\leq \lambda$). The right analogue of Borel sets is given by λ^+ -Borel sets or, equivalently, λ -Borel sets. One can also develop a solid theory of standard λ -Borel spaces.
From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

For such a λ , GDST becomes the theory of λ -Polish spaces (= completely metrizable spaces of weight $\leq \lambda$). The right analogue of Borel sets is given by λ^+ -Borel sets or, equivalently, λ -Borel sets. One can also develop a solid theory of standard λ -Borel spaces.

Recall that in GDST we must replace ω with either λ or $cof(\lambda)$, so "countable" should be translated to "of size $\leq \lambda$ " or remain "of size $\leq \omega$ ". Similarly, "compact" could be replaced by " λ -Lindelöf" or stay the same.

From now on λ is an uncountable cardinal with $cof(\lambda) = \omega$ satisfying $2^{<\lambda} = \lambda$ (equivalently, λ is strong limit).

For such a λ , GDST becomes the theory of λ -Polish spaces (= completely metrizable spaces of weight $\leq \lambda$). The right analogue of Borel sets is given by λ^+ -Borel sets or, equivalently, λ -Borel sets. One can also develop a solid theory of standard λ -Borel spaces.

Recall that in GDST we must replace ω with either λ or $cof(\lambda)$, so "countable" should be translated to "of size $\leq \lambda$ " or remain "of size $\leq \omega$ ". Similarly, "compact" could be replaced by " λ -Lindelöf" or stay the same.

We first consider the second option and look at λ -Borel sets with countable vertical sections, or with compact vertical sections.

Let X be standard λ -Borel, Y be λ -Polish, and $P \subseteq X \times Y$ a λ -Borel set with countable vertical sections. Then:

There is a λ-Borel uniformization of P.
 [Equivalently: proj_X(P) is λ-Borel and there is a λ-Borel uniformizing function f: proj_X(P) → Y for P.]

- There is a λ-Borel uniformization of P.
 [Equivalently: proj_X(P) is λ-Borel and there is a λ-Borel uniformizing function f: proj_X(P) → Y for P.]
- **2** The map from $\operatorname{proj}_X(P)$ to the standard λ -Borel space F(Y) sending $x \in \operatorname{proj}_X(P)$ to $\operatorname{cl}(P_x)$ is λ -Borel.

- There is a λ-Borel uniformization of P.
 [Equivalently: proj_X(P) is λ-Borel and there is a λ-Borel uniformizing function f: proj_X(P) → Y for P.]
- **2** The map from $\operatorname{proj}_X(P)$ to the standard λ -Borel space F(Y) sending $x \in \operatorname{proj}_X(P)$ to $\operatorname{cl}(P_x)$ is λ -Borel.
- Some is a sequence $(ζ_n^P)_{n \in ω}$ of λ-Borel functions $ζ_n^P : \operatorname{proj}_X(P) → Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{ζ_n^P(x) \mid n \in ω\}$ is dense in P_x .

- There is a λ-Borel uniformization of P.
 [Equivalently: proj_X(P) is λ-Borel and there is a λ-Borel uniformizing function f: proj_X(P) → Y for P.]
- **2** The map from $\operatorname{proj}_X(P)$ to the standard λ -Borel space F(Y) sending $x \in \operatorname{proj}_X(P)$ to $\operatorname{cl}(P_x)$ is λ -Borel.
- There is a sequence $(\zeta_n^P)_{n \in \omega}$ of λ -Borel functions $\zeta_n^P : \operatorname{proj}_X(P) \to Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{\zeta_n^P(x) \mid n \in \omega\}$ is dense in P_x .
- There is a sequence $(\varrho_n^P)_{n\in\omega}$ of λ -Borel functions $\varrho_n^P : \operatorname{proj}_X(P) \to Y$ such that $P_x = \{\varrho_n^P \mid n \in \omega\}$ for all $x \in \operatorname{proj}_X(P)$.

- There is a λ-Borel uniformization of P.
 [Equivalently: proj_X(P) is λ-Borel and there is a λ-Borel uniformizing function f: proj_X(P) → Y for P.]
- **2** The map from $\operatorname{proj}_X(P)$ to the standard λ -Borel space F(Y) sending $x \in \operatorname{proj}_X(P)$ to $\operatorname{cl}(P_x)$ is λ -Borel.
- Solution There is a sequence $(ζ_n^P)_{n \in ω}$ of λ-Borel functions $ζ_n^P : \operatorname{proj}_X(P) → Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{ζ_n^P(x) \mid n \in ω\}$ is dense in P_x .
- There is a sequence $(\varrho_n^P)_{n \in \omega}$ of λ -Borel functions $\varrho_n^P : \operatorname{proj}_X(P) \to Y$ such that $P_x = \{\varrho_n^P \mid n \in \omega\}$ for all $x \in \operatorname{proj}_X(P)$.
- The set P can be written as $P = \bigcup_{n \in \omega} P_n$ where the sets P_n are pairwise disjoint λ -Borel sets with vertical sections of size 1.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F \subseteq X \times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x \subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F \subseteq X \times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x \subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Let $P \subseteq X \times Y$ be λ -Borel and with countable vertical sections. Pick a closed set $F \subseteq X \times {}^{\omega}\lambda$ and a λ -Borel isomorphism $f \colon F \to P$ such that $\operatorname{proj}_X(w) = \operatorname{proj}_X(f(w))$ for all $w \in F$.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F \subseteq X \times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x \subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Let $P \subseteq X \times Y$ be λ -Borel and with countable vertical sections. Pick a closed set $F \subseteq X \times {}^{\omega}\lambda$ and a λ -Borel isomorphism $f \colon F \to P$ such that $\operatorname{proj}_X(w) = \operatorname{proj}_X(f(w))$ for all $w \in F$. All nonempty vertical sections F_x of F are closed and countable, hence Polish (in the classical sense!).

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F \subseteq X \times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x \subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Let $P \subseteq X \times Y$ be λ -Borel and with countable vertical sections. Pick a closed set $F \subseteq X \times {}^{\omega}\lambda$ and a λ -Borel isomorphism $f \colon F \to P$ such that $\operatorname{proj}_X(w) = \operatorname{proj}_X(f(w))$ for all $w \in F$. All nonempty vertical sections F_x of F are closed and countable, hence Polish (in the classical sense!). By countability, each F_x has an isolated point, hence we can apply the proposition.

Proposition

Let X be a standard λ -Borel space, Z a λ -Polish space, and $F \subseteq X \times Z$ a λ -Borel set such that each of its nonempty vertical sections $F_x \subseteq Z$ has an isolated point. Then F has a λ -Borel uniformization.

Let $P \subseteq X \times Y$ be λ -Borel and with countable vertical sections. Pick a closed set $F \subseteq X \times {}^{\omega}\lambda$ and a λ -Borel isomorphism $f \colon F \to P$ such that $\operatorname{proj}_X(w) = \operatorname{proj}_X(f(w))$ for all $w \in F$. All nonempty vertical sections F_x of F are closed and countable, hence Polish (in the classical sense!). By countability, each F_x has an isolated point, hence we can apply the proposition. Let F^* be a λ -Borel uniformization of F: then $P^* = f(F^*)$ is a λ -Borel uniformization of P. \Box (part •)

Proposition

Let E be an equivalence relation on a standard λ -Borel space X that can be written as $E = \bigcup_{\alpha < \mu} P_{\mu}$ with $\omega \le \mu \le \lambda$ and each P_{μ} a λ -Borel set with vertical sections of size 1. Then there is a (discrete) group G of size $\le \mu$ acting on X by λ -Borel isomorphisms (in fact, involutions) which generates E. If moreover $\mu > \omega$, then E is hyper- μ -small.

Proposition

Let E be an equivalence relation on a standard λ -Borel space X that can be written as $E = \bigcup_{\alpha < \mu} P_{\mu}$ with $\omega \le \mu \le \lambda$ and each P_{μ} a λ -Borel set with vertical sections of size 1. Then there is a (discrete) group G of size $\le \mu$ acting on X by λ -Borel isomorphisms (in fact, involutions) which generates E. If moreover $\mu > \omega$, then E is hyper- μ -small.

Generalized Feldman-Moore Theorem

Let X be a standard λ -Borel space. Then E is a countable λ -Borel equivalence relation on X if and only if it is the orbit equivalence relation induced by a λ -Borel action of a countable (discrete) group G on X.

Let X be a standard λ -Borel space, Y a λ -Polish space, and $P \subseteq X \times Y$ a λ -Borel set with compact vertical sections. Then:

① There is a λ -Borel uniformization of P.

- There is a λ -Borel uniformization of P.
- One of the map from $\operatorname{proj}_X(P)$ to K(Y) ⊆ F(Y) sending $x ∈ \operatorname{proj}_X(P)$ to P_x is λ-Borel.

- There is a λ -Borel uniformization of P.
- The map from $\operatorname{proj}_X(P)$ to K(Y) ⊆ F(Y) sending $x ∈ \operatorname{proj}_X(P)$ to P_x is λ-Borel.
- **3** There is a sequence $(\zeta_n^P)_{n \in \omega}$ of λ -Borel functions $\zeta_n^P : \operatorname{proj}_X(P) \to Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{\zeta_n^P(x) \mid n \in \omega\}$ is dense in P_x .

Let X be a standard λ -Borel space, Y a λ -Polish space, and $P \subseteq X \times Y$ a λ -Borel set with compact vertical sections. Then:

- There is a λ -Borel uniformization of P.
- ② The map from $\text{proj}_X(P)$ to K(Y) ⊆ F(Y) sending $x ∈ \text{proj}_X(P)$ to P_x is λ-Borel.
- Some is a sequence $(ζ_n^P)_{n \in ω}$ of λ-Borel functions $ζ_n^P : \operatorname{proj}_X(P) → Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{ζ_n^P(x) \mid n \in ω\}$ is dense in P_x .
- There is a sequence $(\varrho_{\alpha}^{P})_{\alpha < 2^{\aleph_{0}}}$ of λ -Borel maps $\varrho_{\alpha}^{P} : \operatorname{proj}_{X}(P) \to Y$ such that $P_{x} = \{\varrho_{\alpha}^{P} \mid \alpha < 2^{\aleph_{0}}\}$ for all $x \in \operatorname{proj}_{X}(P)$.

[Recall that $\omega < 2^{\aleph_0} < \lambda$ by choice of λ .]

Let X be a standard λ -Borel space, Y a λ -Polish space, and $P \subseteq X \times Y$ a λ -Borel set with compact vertical sections. Then:

- There is a λ -Borel uniformization of P.
- **2** The map from $\operatorname{proj}_X(P)$ to $K(Y) \subseteq F(Y)$ sending $x \in \operatorname{proj}_X(P)$ to P_x is λ -Borel.
- **3** There is a sequence $(\zeta_n^P)_{n \in \omega}$ of λ -Borel functions $\zeta_n^P : \operatorname{proj}_X(P) \to Y$ such that for all $x \in \operatorname{proj}_X(P)$ the set $\{\zeta_n^P(x) \mid n \in \omega\}$ is dense in P_x .
- There is a sequence $(\varrho_{\alpha}^{P})_{\alpha < 2^{\aleph_{0}}}$ of λ -Borel maps $\varrho_{\alpha}^{P} : \operatorname{proj}_{X}(P) \to Y$ such that $P_{x} = \{\varrho_{\alpha}^{P} \mid \alpha < 2^{\aleph_{0}}\}$ for all $x \in \operatorname{proj}_{X}(P)$.

[Recall that $\omega < 2^{\aleph_0} < \lambda$ by choice of λ .]

• The set P can be written as $P = \bigcup_{\alpha < 2^{\aleph_0}} P_{\alpha}$ where the sets P_{α} are pairwise disjoint λ -Borel sets with vertical sections of size 1.

The classical proof uses compactification, which is out of reach here because our spaces are not separable. So we had to develop a quite different machinery.

The classical proof uses compactification, which is out of reach here because our spaces are not separable. So we had to develop a quite different machinery.

Corollary

If E is a λ -Borel equivalence relation on a λ -Polish space X and all its classes are compact, then E is λ -smooth (= λ -Borel reducible to identity on a λ -Polish space).

The classical proof uses compactification, which is out of reach here because our spaces are not separable. So we had to develop a quite different machinery.

Corollary

If E is a λ -Borel equivalence relation on a λ -Polish space X and all its classes are compact, then E is λ -smooth (= λ -Borel reducible to identity on a λ -Polish space).

Recall that $\omega < 2^{\aleph_0} < \lambda$.

Corollary ("half" Feldman-Moore Theorem)

Let E be a λ -Borel equivalence relation on a λ -Polish space X such that all its classes are compact. Then E is the orbit equivalence relation induced by a λ -Borel action on X of a (discrete) group G of size 2^{\aleph_0} .

The classical proof uses compactification, which is out of reach here because our spaces are not separable. So we had to develop a quite different machinery.

Corollary

If E is a λ -Borel equivalence relation on a λ -Polish space X and all its classes are compact, then E is λ -smooth (= λ -Borel reducible to identity on a λ -Polish space).

Recall that $\omega < 2^{\aleph_0} < \lambda$.

Corollary ("half" Feldman-Moore Theorem)

Let E be a λ -Borel equivalence relation on a λ -Polish space X such that all its classes are compact. Then E is the orbit equivalence relation induced by a λ -Borel action on X of a (discrete) group G of size 2^{\aleph_0} .

Moreover, E is hyper- 2^{\aleph_0} -small.

L. Motto Ros (Turin, Italy)

- σ -compact
- ${\it 2} \ {\rm size} \leq \lambda$

- σ -compact
- ${\color{black} 2} {\color{black} {\rm size}} \leq \lambda$
- **3** closed λ -Lindelöf

- σ -compact
- ${\it 2} \ {\rm size} \leq \lambda$
- **3** closed λ -Lindelöf

- σ -compact
- 2 size $\leq \lambda$
- **3** closed λ -Lindelöf
- $\textbf{ o } \lambda \textbf{-sized union of closed } \lambda \textbf{-Lindelöf sets }$

There are other "smallness conditions" that could be considered here:

- σ -compact
- 2 size $\leq \lambda$
- **3** closed λ -Lindelöf
- **(**) λ -sized union of closed λ -Lindelöf sets

In the classical setting, the most general result is provided by the σ -compact case. Here instead we have:

There are other "smallness conditions" that could be considered here:

- σ -compact
- 2 size $\leq \lambda$
- closed λ-Lindelöf
- **(**) λ -sized union of closed λ -Lindelöf sets

In the classical setting, the most general result is provided by the $\sigma\text{-compact case}.$ Here instead we have:

Proposition

If a λ -Polish space X is λ -Lindelöf, then X is well-orderable and $|X| \leq \lambda$.

There are other "smallness conditions" that could be considered here:

- σ -compact
- 2 size $\leq \lambda$
- **3** closed λ -Lindelöf
- **(**) λ -sized union of closed λ -Lindelöf sets

In the classical setting, the most general result is provided by the $\sigma\text{-compact case}.$ Here instead we have:

Proposition

If a λ -Polish space X is λ -Lindelöf, then X is well-orderable and $|X| \leq \lambda$.

Hence the more general case is given by \bigcirc (which is equivalent to \bigcirc and \bigcirc).

There are other "smallness conditions" that could be considered here:

- σ -compact
- 2 size $\leq \lambda$
- 3 closed λ -Lindelöf
- **(**) λ -sized union of closed λ -Lindelöf sets

In the classical setting, the most general result is provided by the $\sigma\text{-compact case}.$ Here instead we have:

Proposition

If a λ -Polish space X is λ -Lindelöf, then X is well-orderable and $|X| \leq \lambda$.

Hence the more general case is given by ② (which is equivalent to ③ and ③). This is still work in progress...

...more on the blackboard!!
Let $\lambda > \omega$ be singular and such that $2^{<\lambda} = \lambda$.

- Let $\lambda > \omega$ be singular and such that $2^{<\lambda} = \lambda$.
 - Can we have "large section" uniformization results, too?
 [Meta-problem: Are there interesting λ-ideals to play with?]

- Let $\lambda > \omega$ be singular and such that $2^{<\lambda} = \lambda$.
 - Can we have "large section" uniformization results, too?
 [Meta-problem: Are there interesting λ-ideals to play with?]
 - What about cardinals \(\lambda\) with uncountable cofinality?
 [This case seems to be much closer to the regular one, so we mostly expect negative results.]

- Let $\lambda > \omega$ be singular and such that $2^{<\lambda} = \lambda$.
 - Can we have "large section" uniformization results, too?
 [Meta-problem: Are there interesting λ-ideals to play with?]
 - What about cardinals \(\lambda\) with uncountable cofinality?
 [This case seems to be much closer to the regular one, so we mostly expect negative results.]

Thank you for your attention!