
Uniformization results and Feldman-Moore Theorem
in generalized descriptive set theory

Luca Motto Ros

Department of Mathematics “G. Peano”
University of Turin, Italy
luca.mottoros@unito.it

https://sites.google.com/site/lucamottoros/

Workshop “Generalised Baire Space and Large Cardinals”
Bristol, February 8–10, 2024

L. Motto Ros (Turin, Italy) Uniformization in GDST Bristol, 8.2.2024 1 / 17



Uniformization theorems

Given P ⊆ X × Y , a uniformization of P is a subset P ∗ ⊆ P such that
for all x ∈ X

∃y P (x, y) ⇐⇒ ∃!y P ∗(x, y).

Equivalently, P ∗ is the graph of a function f (called uniformizing
function) with domain projX(P ) such that f(x) ∈ Px for every x ∈ A.
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Borel uniformizations

Fact
Let X,Y be standard Borel spaces. A set P ⊆ X × Y has a Borel
uniformization if and only if projX(P ) is Borel and there is a Borel
uniformizing function f : projX(P )→ Y for P .

It is easy to show that there are Borel sets without Borel uniformizations.

General theme
Suppose that X,Y are Polish or standard Borel spaces, and that
P ⊆ X × Y is Borel. Under which conditions there is a Borel
uniformization of P?

Today we are interested in “small section” uniformization results:
if all the vertical sections of P are sufficiently small, then there is
a Borel uniformization of P .
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“Small section” uniformization results

Theorem (Lusin-Novikov)
Let X,Y be standard Borel spaces, and P ⊆ X × Y a Borel set with
countable vertical sections. Then P =

⋃
n∈ω Pn with each Pn a Borel set

with vertical sections of size 1.

Therefore P has a Borel unifomization.

Theorem (???)
Let X be a standard Borel space, Y a Polish space, and P ⊆ X × Y a
Borel set with compact vertical sections Px. Then the map x 7→ Px from
X to K(Y ) (endowed with the Vietoris topology) is Borel. Therefore P has a
Borel uniformization.

Theorem (Arsenin-Kunugui)
Let X be a standard Borel space, Y a Polish space, and P ⊆ X × Y a
Borel set whose vertical sections Px are σ-compact (= countable unions of
compact sets). Then P has a Borel uniformization.
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Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a countable
Borel equivalence relation (CBER) if it is Borel as a subset of X2, and
all its equivalence classes are countable.

Feldman-Moore Theorem
Let E be an equivalence relation on a standard Borel space X. Then E is
a CBER if and only if it is the orbit equivalence relation induced by a Borel
action of a countable (discrete) group G on X.

Equivalently: E is CBER if and only if there is a countable group G acting
on X by Borel isomorphisms (in fact, involutions) which generates E.

The importance of this theorem in descriptive set theory
cannot be underestimated!

[Study of CBERs, Borel combinatorics, definable paradoxical decompositions, ...]
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Hyperfinite equivalence relations

A CBER E is hyperfinite if it can be written as a countable increasing
union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

Any CBER that admits a Borel transversal is hyperfinite.
[Easy application of the Feldman-Moore Theorem.]

Every CBER on a Polish space is hyperfinite on a comeager set.
There are CBERs which are not hyperfinite.
[Consider e.g. the shift-action of F2 on 2F2 . More generally, every non-
amenable countable group admits a Borel action on a standard Borel space
which induces a non-hyperfinite CBER.]

Weiss’ conjecture
Any Borel action of a countable amenable group on a standard Borel space
induces a hyperfinite CBER.
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Moving to generalized descriptive set theory (GDST)...

Let κ be an uncountable cardinal such that 2<κ = κ.

In all definitions, ω must be replaced by κ of cof(κ):

Cantor space ω2  generalized Cantor space κ2

Baire space ωω  generalized Baire space cof(κ)κ

Borel  κ+-Borel
countable  of size ≤ κ? or ≤ cof(κ)?

finite  of size < κ (i.e. “κ-small”)? or < cof(κ)?
compact  κ-Lindelöf? or cof(κ)-Lindelöf?

...and so on.

Can we have “small section” uniformization results and/or
an analogue of the Feldman-Moore theorem in GDST?
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Interludio: the regular case

Assume that κ > ω is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on κ2 induced by a κ+-Borel action of
a (discrete) group of size at most κ, then E ≤κB Eκ0 , where E

κ
0 is defined

on 2κ by x Eκ0 y ⇐⇒ ∃α < κ ∀β ≥ α (x(β) = y(β)).

Moreover, since κ is uncountable every orbit equivalence relation induced
by a ≤ κ-sized discrete group is hyper-κ-small, i.e. it can be written as an
increasing union of size κ of κ+-Borel equivalence relation which are
κ-small (= all their classes have size < κ). However:

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

Assume V = L. Then there is a κ+-Borel equivalence relation E whose
classes have size 2 which is not induced by a κ+-Borel action of a
(discrete) group of size ≤ κ.
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Interludio: the regular case

One can also easily observe that no “small section” uniformization result
can hold if we formulate it in terms of uniformizing functions.

Fact
There is a function f : κ2→ κ2 whose graph P ⊆ κ2× κ2 is κ+-Borel,
yet f is not κ+-Borel itself.

Open problems (?)
Let κ > ω be regular and such that 2<κ = κ.

1 Is it consistent that the generalized Feldman-Moore Theorem holds for
equivalence relations on κ2?

2 Is there a κ+-Borel equivalence relation on κ2 with classes of size at
most κ which is not κ+-Borel reducible to Eκ0 ?

3 Can we have (at least consistently) “small section” uniformization
results for κ+-Borel subsets of κ2?
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The countable cofinality case

From now on λ is an uncountable cardinal with cof(λ) = ω
satisfying 2<λ = λ (equivalently, λ is strong limit).

For such a λ, GDST becomes the theory of λ-Polish spaces (= completely
metrizable spaces of weight ≤ λ). The right analogue of Borel sets is given by
λ+-Borel sets or, equivalently, λ-Borel sets. One can also develop a solid
theory of standard λ-Borel spaces.

Recall that in GDST we must replace ω with either λ or cof(λ), so
“countable” should be translated to “of size ≤ λ” or remain “of size ≤ ω”.
Similarly, “compact” could be replaced by “λ-Lindelöf” or stay the same.

We first consider the second option and look at λ-Borel sets with
countable vertical sections, or with compact vertical sections.
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theory of standard λ-Borel spaces.

Recall that in GDST we must replace ω with either λ or cof(λ), so
“countable” should be translated to “of size ≤ λ” or remain “of size ≤ ω”.
Similarly, “compact” could be replaced by “λ-Lindelöf” or stay the same.

We first consider the second option and look at λ-Borel sets with
countable vertical sections, or with compact vertical sections.
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Countable vertical sections

Theorem
Let X be standard λ-Borel, Y be λ-Polish, and P ⊆ X × Y a λ-Borel set
with countable vertical sections. Then:

1 There is a λ-Borel uniformization of P .
[Equivalently: projX(P ) is λ-Borel and there is a λ-Borel uniformizing
function f : projX(P )→ Y for P .]

2 The map from projX(P ) to the standard λ-Borel space F (Y ) sending
x ∈ projX(P ) to cl(Px) is λ-Borel.

3 There is a sequence (ζPn )n∈ω of λ-Borel functions ζPn : projX(P )→ Y
such that for all x ∈ projX(P ) the set {ζPn (x) | n ∈ ω} is dense in Px.

4 There is a sequence (%Pn )n∈ω of λ-Borel functions %Pn : projX(P )→ Y
such that Px = {%Pn | n ∈ ω} for all x ∈ projX(P ).

5 The set P can be written as P =
⋃
n∈ω Pn where the sets Pn are

pairwise disjoint λ-Borel sets with vertical sections of size 1.
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Countable vertical sections

The proof is radically different from the classical one because we lack a
Baire category notion matching well with that of λ-Borel sets. Instead, we
use an easy uniformization theorem and a “change of topology” argument.

Proposition
Let X be a standard λ-Borel space, Z a λ-Polish space, and F ⊆ X × Z a
λ-Borel set such that each of its nonempty vertical sections Fx ⊆ Z has an
isolated point. Then F has a λ-Borel uniformization.

Let P ⊆ X × Y be λ-Borel and with countable vertical sections. Pick a
closed set F ⊆ X × ωλ and a λ-Borel isomorphism f : F → P such that
projX(w) = projX(f(w)) for all w ∈ F . All nonempty vertical sections Fx
of F are closed and countable, hence Polish (in the classical sense!). By
countability, each Fx has an isolated point, hence we can apply the
proposition. Let F ∗ be a λ-Borel uniformization of F : then P ∗ = f(F ∗) is
a λ-Borel uniformization of P . (part 1 )
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Countable vertical sections

Proposition
Let E be an equivalence relation on a standard λ-Borel space X that can
be written as E =

⋃
α<µ Pµ with ω ≤ µ ≤ λ and each Pµ a λ-Borel set

with vertical sections of size 1. Then there is a (discrete) group G of size
≤ µ acting on X by λ-Borel isomorphisms (in fact, involutions) which
generates E. If moreover µ > ω, then E is hyper-µ-small.

Generalized Feldman-Moore Theorem
Let X be a standard λ-Borel space. Then E is a countable λ-Borel
equivalence relation on X if and only if it is the orbit equivalence relation
induced by a λ-Borel action of a countable (discrete) group G on X.
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Compact vertical sections

Theorem
Let X be a standard λ-Borel space, Y a λ-Polish space, and P ⊆ X × Y a
λ-Borel set with compact vertical sections. Then:

1 There is a λ-Borel uniformization of P .
2 The map from projX(P ) to K(Y ) ⊆ F (Y ) sending x ∈ projX(P ) to
Px is λ-Borel.

3 There is a sequence (ζPn )n∈ω of λ-Borel functions ζPn : projX(P )→ Y
such that for all x ∈ projX(P ) the set {ζPn (x) | n ∈ ω} is dense in Px.

4 There is a sequence (%Pα )α<2ℵ0 of λ-Borel maps %Pα : projX(P )→ Y
such that Px = {%Pα | α < 2ℵ0} for all x ∈ projX(P ).

[Recall that ω < 2ℵ0 < λ by choice of λ.]
5 The set P can be written as P =

⋃
α<2ℵ0 Pα where the sets Pα are

pairwise disjoint λ-Borel sets with vertical sections of size 1.
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Compact vertical sections

The classical proof uses compactification, which is out of reach here
because our spaces are not separable. So we had to develop a quite
different machinery.

Corollary
If E is a λ-Borel equivalence relation on a λ-Polish space X and all its
classes are compact, then E is λ-smooth (= λ-Borel reducible to identity on a
λ-Polish space).

Recall that ω < 2ℵ0 < λ.

Corollary (“half” Feldman-Moore Theorem)
Let E be a λ-Borel equivalence relation on a λ-Polish space X such that
all its classes are compact. Then E is the orbit equivalence relation induced
by a λ-Borel action on X of a (discrete) group G of size 2ℵ0 .
Moreover, E is hyper-2ℵ0-small.
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by a λ-Borel action on X of a (discrete) group G of size 2ℵ0 .
Moreover, E is hyper-2ℵ0-small.
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What’s next?

There are other “smallness conditions” that could be considered here:

1 σ-compact

2 size ≤ λ
3 closed λ-Lindelöf
4 λ-sized union of compact sets

5 λ-sized union of closed λ-Lindelöf sets

In the classical setting, the most general result is provided by the
σ-compact case. Here instead we have:

Proposition
If a λ-Polish space X is λ-Lindelöf, then X is well-orderable and |X| ≤ λ.

Hence the more general case is given by 2 (which is equivalent to 4 and
5 ). This is still work in progress...

...more on the blackboard!!
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Open problems

Open problems

Let λ > ω be singular and such that 2<λ = λ.

1 Can we have “large section” uniformization results, too?

[Meta-problem: Are there interesting λ-ideals to play with?]

2 What about cardinals λ with uncountable cofinality?

[This case seems to be much closer to the regular one, so we mostly
expect negative results.]

Thank you for your attention!
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