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Uniformization theorems

Given P C X x Y, a uniformization of P is a subset P* C P such that
forallz e X

Jy P(x,y) < 3y P*(x,y).

Equivalently, P* is the graph of a function f (called uniformizing
function) with domain projy (P) such that f(z) € P, for every z € A.
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Borel uniformizations

Let X,Y be standard Borel spaces. A set P C X x Y has a Borel
uniformization if and only if projy (P) is Borel and there is a Borel
uniformizing function f: projy(P) — Y for P.
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Borel uniformizations

Let X,Y be standard Borel spaces. A set P C X x Y has a Borel
uniformization if and only if projy (P) is Borel and there is a Borel
uniformizing function f: projy(P) — Y for P.

It is easy to show that there are Borel sets without Borel uniformizations.

General theme

Suppose that X, Y are Polish or standard Borel spaces, and that
P C X xY is Borel. Under which conditions there is a Borel
uniformization of P?
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Borel uniformizations

Let X,Y be standard Borel spaces. A set P C X x Y has a Borel
uniformization if and only if projy (P) is Borel and there is a Borel
uniformizing function f: projy(P) — Y for P.

It is easy to show that there are Borel sets without Borel uniformizations.

General theme

Suppose that X, Y are Polish or standard Borel spaces, and that
P C X xY is Borel. Under which conditions there is a Borel
uniformization of P?

Today we are interested in “small section” uniformization results:
if all the vertical sections of P are sufficiently small, then there is
a Borel uniformization of P.
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“Small section” uniformization results

Theorem (Lusin-Novikov)

Let X,Y be standard Borel spaces, and P C X x Y a Borel set with
countable vertical sections. Then P =, ., P with each P, a Borel set
with vertical sections of size 1.
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“Small section” uniformization results

Theorem (Lusin-Novikov)

Let X,Y be standard Borel spaces, and P C X x Y a Borel set with
countable vertical sections. Then P =, ., P with each P, a Borel set
with vertical sections of size 1. Therefore P has a Borel unifomization.
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“Small section” uniformization results

Theorem (Lusin-Novikov)
Let X,Y be standard Borel spaces, and P C X x Y a Borel set with

countable vertical sections. Then P =, ., P with each P, a Borel set
with vertical sections of size 1. Therefore P has a Borel unifomization.

Theorem (777)

Let X be a standard Borel space, Y a Polish space, and P C X x Y a
Borel set with compact vertical sections P,. Then the map = — P, from
X to K(Y') (endowed with the Vietoris topology) is Borel.
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“Small section” uniformization results

Theorem (Lusin-Novikov)

Let X,Y be standard Borel spaces, and P C X x Y a Borel set with
countable vertical sections. Then P = J, ., P with each P, a Borel set
with vertical sections of size 1. Therefore P has a Borel unifomization.

Theorem (777)

Let X be a standard Borel space, Y a Polish space, and P C X x Y a
Borel set with compact vertical sections P,. Then the map x — P, from
X to K(Y') (endowed with the Vietoris topology) is Borel. Therefore P has a
Borel uniformization.

Theorem (Arsenin-Kunugui)

Let X be a standard Borel space, Y a Polish space, and P C X x Y a
Borel set whose vertical sections P, are o-compact (= countable unions of
compact sets). Then P has a Borel uniformization.
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Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a countable

Borel equivalence relation (CBER) if it is Borel as a subset of X2, and
all its equivalence classes are countable.
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Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a countable
Borel equivalence relation (CBER) if it is Borel as a subset of X2, and
all its equivalence classes are countable.

Feldman-Moore Theorem

Let F be an equivalence relation on a standard Borel space X. Then E is
a CBER if and only if it is the orbit equivalence relation induced by a Borel
action of a countable (discrete) group G on X.

Equivalently: E is CBER if and only if there is a countable group G acting
on X by Borel isomorphisms (in fact, involutions) which generates E.
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Feldman-Moore Theorem

An equivalence relation E on a standard Borel space X is a countable
Borel equivalence relation (CBER) if it is Borel as a subset of X2, and
all its equivalence classes are countable.

Feldman-Moore Theorem

Let F be an equivalence relation on a standard Borel space X. Then E is
a CBER if and only if it is the orbit equivalence relation induced by a Borel
action of a countable (discrete) group G on X.

Equivalently: E is CBER if and only if there is a countable group G acting
on X by Borel isomorphisms (in fact, involutions) which generates E.

The importance of this theorem in descriptive set theory
cannot be underestimated! J

[Study of CBERSs, Borel combinatorics, definable paradoxical decompositions, ...]

L. Motto Ros (Turin, ltaly) Uniformization in GDST Bristol, 8.2.2024 5/17



Hyperfinite equivalence relations

A CBER FE is hyperfinite if it can be written as a countable increasing
union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

.
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Hyperfinite equivalence relations

A CBER FE is hyperfinite if it can be written as a countable increasing
union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

@ Any CBER that admits a Borel transversal is hyperfinite.
[Easy application of the Feldman-Moore Theorem.]

.
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Hyperfinite equivalence relations

A CBER FE is hyperfinite if it can be written as a countable increasing
union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

@ Any CBER that admits a Borel transversal is hyperfinite.
[Easy application of the Feldman-Moore Theorem.]

@ Every CBER on a Polish space is hyperfinite on a comeager set.
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Hyperfinite equivalence relations

A CBER FE is hyperfinite if it can be written as a countable increasing
union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

@ Any CBER that admits a Borel transversal is hyperfinite.
[Easy application of the Feldman-Moore Theorem.]
@ Every CBER on a Polish space is hyperfinite on a comeager set.

@ There are CBERs which are not hyperfinite.
[Consider e.g. the shift-action of Fy on 2¥2. More generally, every non-
amenable countable group admits a Borel action on a standard Borel space
which induces a non-hyperfinite CBER|]

.
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Hyperfinite equivalence relations

A CBER FE is hyperfinite if it can be written as a countable increasing
union of finite (= all classes are finite) Borel equivalence relations.

Some known facts:

@ Any CBER that admits a Borel transversal is hyperfinite.
[Easy application of the Feldman-Moore Theorem.|
@ Every CBER on a Polish space is hyperfinite on a comeager set.

@ There are CBERs which are not hyperfinite.
[Consider e.g. the shift-action of Fy on 2¥2. More generally, every non-
amenable countable group admits a Borel action on a standard Borel space
which induces a non-hyperfinite CBER|]

Weiss' conjecture

Any Borel action of a countable amenable group on a standard Borel space
induces a hyperfinite CBER.
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Moving to generalized descriptive set theory (GDS

Let k be an uncountable cardinal such that 2<% = k.
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Let k be an uncountable cardinal such that 2<% = k.

In all definitions, w must be replaced by « of cof(k):
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Moving to generalized descriptive set theory (GDS

Let k be an uncountable cardinal such that 2<% = k.
In all definitions, w must be replaced by « of cof(k):

Cantor space “2 ~»  generalized Cantor space ©2

cof (k)

Baire space “w ~»  generalized Baire space K

Borel ~» kT-Borel
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Moving to generalized descriptive set theory (GDS

Let k be an uncountable cardinal such that 2<% = k.

In all definitions, w must be replaced by « of cof(k):

Cantor space “2
Baire space “w
Borel

countable

finite

compact

§

I A

generalized Cantor space "2
generalized Baire space
kT -Borel

of size < k? or < cof(k)?

of size < k (i.e. “k-small”)? or < cof(k)?

cof (k)

K

k-Lindelof? or cof(k)-Lindelof?

...and so on. |
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Moving to generalized descriptive set theory (GDS

Let k be an uncountable cardinal such that 2<% = k.

In all definitions, w must be replaced by « of cof(k):
Cantor space “2 ~»  generalized Cantor space ©2
Baire space “w ~»  generalized Baire space (%),
Borel ~s kT-Borel
countable ~»  of size < k? or < cof(k)?
finite ~» of size < k (i.e. “k-small”)? or < cof(k)?
compact ~»  k-Lindelo6f? or cof(r)-Lindelof?
...and so on. |

Can we have “small section” uniformization results and/or
an analogue of the Feldman-Moore theorem in GDST? J
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Interludio: the regular case

Assume that x > w is regular.
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Interludio: the regular case

Assume that x > w is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on #2 induced by a x™-Borel action of
a (discrete) group of size at most «, then E <, Ef, where Ejj is defined
on 2 by x Ef y <= Ja < kVS > a(z(B) =y(B)).
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Interludio: the regular case

Assume that x > w is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on #2 induced by a x™-Borel action of
a (discrete) group of size at most «, then E <, Ef, where Ejj is defined
on 2 by x Ef y <= Ja < kVS > a(z(B) =y(B)).

Moreover, since x is uncountable every orbit equivalence relation induced
by a < k-sized discrete group is hyper-x-small, i.e. it can be written as an
increasing union of size x of x*-Borel equivalence relation which are
r-small (= all their classes have size < k).
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Interludio: the regular case

Assume that x > w is regular.

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

If E is an orbit equivalence relation on #2 induced by a x™-Borel action of
a (discrete) group of size at most «, then E <, Ef, where Ejj is defined
on2"byz Efy <= Ja < kB> a(z(B) =y(B)).

Moreover, since x is uncountable every orbit equivalence relation induced
by a < k-sized discrete group is hyper-x-small, i.e. it can be written as an
increasing union of size x of x*-Borel equivalence relation which are
r-small (= all their classes have size < ). However:

Theorem (S.-D. Friedman-Hyttinen-Kulikov)

Assume V = L. Then there is a x™-Borel equivalence relation E whose
classes have size 2 which is not induced by a x™-Borel action of a
(discrete) group of size < k.
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Interludio: the regular case

One can also easily observe that no “small section” uniformization result
can hold if we formulate it in terms of uniformizing functions.
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Interludio: the regular case

One can also easily observe that no “small section” uniformization result
can hold if we formulate it in terms of uniformizing functions.

There is a function f: ®2 — %2 whose graph P C ®2 x %2 is x™-Borel,
yet f is not kT-Borel itself.
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Interludio: the regular case

One can also easily observe that no “small section” uniformization result
can hold if we formulate it in terms of uniformizing functions.

There is a function f: ®2 — %2 whose graph P C ®2 x %2 is x™-Borel,
yet f is not kT-Borel itself.

Open problems (7)

Let K > w be regular and such that 2<% = k.
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Interludio: the regular case

One can also easily observe that no “small section” uniformization result
can hold if we formulate it in terms of uniformizing functions.

There is a function f: ®2 — %2 whose graph P C ®2 x %2 is x™-Borel,
yet f is not kT-Borel itself.

Open problems (7)

Let K > w be regular and such that 2<% = k.

@ s it consistent that the generalized Feldman-Moore Theorem holds for
equivalence relations on ©27
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Interludio: the regular case

One can also easily observe that no “small section” uniformization result
can hold if we formulate it in terms of uniformizing functions.

There is a function f: ®2 — %2 whose graph P C ®2 x %2 is x™-Borel,
yet f is not kT-Borel itself.

Open problems (7)

Let K > w be regular and such that 2<% = k.

@ s it consistent that the generalized Feldman-Moore Theorem holds for
equivalence relations on ©27

@ Is there a kT-Borel equivalence relation on #2 with classes of size at
most  which is not xT-Borel reducible to Ef?
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Interludio: the regular case

One can also easily observe that no “small section” uniformization result
can hold if we formulate it in terms of uniformizing functions.

There is a function f: ®2 — %2 whose graph P C ®2 x %2 is x™-Borel,
yet f is not kT-Borel itself.

Open problems (7)

Let K > w be regular and such that 2<% = k.

@ s it consistent that the generalized Feldman-Moore Theorem holds for
equivalence relations on ©27

@ Is there a kT-Borel equivalence relation on #2 with classes of size at
most  which is not xT-Borel reducible to Ef?

© Can we have (at least consistently) “small section” uniformization
results for x-Borel subsets of #27
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The countable cofinality case

From now on \ is an uncountable cardinal with cof(\) = w
satisfying 2<* = \ (equivalently, \ is strong limit).
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The countable cofinality case

From now on \ is an uncountable cardinal with cof(\) = w
satisfying 2<* = \ (equivalently, \ is strong limit).

For such a A\, GDST becomes the theory of A-Polish spaces (= completely
metrizable spaces of weight < X).
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The countable cofinality case

From now on \ is an uncountable cardinal with cof(\) = w
satisfying 2<* = \ (equivalently, \ is strong limit).

For such a A\, GDST becomes the theory of A-Polish spaces (= completely
metrizable spaces of weight < ). The right analogue of Borel sets is given by
A*-Borel sets or, equivalently, A\-Borel sets. One can also develop a solid
theory of standard \-Borel spaces.
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The countable cofinality case

From now on \ is an uncountable cardinal with cof(\) = w
satisfying 2<* = \ (equivalently, \ is strong limit).

For such a A\, GDST becomes the theory of A-Polish spaces (= completely
metrizable spaces of weight < ). The right analogue of Borel sets is given by
A*-Borel sets or, equivalently, A\-Borel sets. One can also develop a solid
theory of standard \-Borel spaces.

Recall that in GDST we must replace w with either A or cof(\), so
“countable” should be translated to “of size < A" or remain “of size < w".
Similarly, “compact” could be replaced by “A-Lindel6f” or stay the same.
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The countable cofinality case

From now on \ is an uncountable cardinal with cof(\) = w
satisfying 2<* = \ (equivalently, \ is strong limit).

For such a A\, GDST becomes the theory of A-Polish spaces (= completely
metrizable spaces of weight < ). The right analogue of Borel sets is given by
A*-Borel sets or, equivalently, A\-Borel sets. One can also develop a solid
theory of standard \-Borel spaces.

Recall that in GDST we must replace w with either A or cof(\), so
“countable” should be translated to “of size < A" or remain “of size < w".
Similarly, “compact” could be replaced by “A-Lindel6f” or stay the same.

We first consider the second option and look at A-Borel sets with
countable vertical sections, or with compact vertical sections. J
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Countable vertical sections

Let X be standard \-Borel, Y be A-Polish, and P C X x Y a \-Borel set
with countable vertical sections. Then:

A
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Countable vertical sections

Let X be standard \-Borel, Y be A-Polish, and P C X x Y a \-Borel set
with countable vertical sections. Then:
© There is a A\-Borel uniformization of P.

[Equivalently: projy(P) is A-Borel and there is a A-Borel uniformizing
function f: projy (P) — Y for P.]

A
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Countable vertical sections

Let X be standard \-Borel, Y be A-Polish, and P C X x Y a \-Borel set
with countable vertical sections. Then:
© There is a A\-Borel uniformization of P.
[Equivalently: projy(P) is A-Borel and there is a A-Borel uniformizing
function f: projy (P) — Y for P.]
@ The map from projy (P) to the standard A-Borel space F'(Y') sending
x € projx (P) to cl(Py) is \-Borel.

A
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Countable vertical sections

Let X be standard \-Borel, Y be A-Polish, and P C X x Y a \-Borel set
with countable vertical sections. Then:
© There is a A\-Borel uniformization of P.
[Equivalently: projy(P) is A-Borel and there is a A-Borel uniformizing
function f: projy (P) — Y for P.]
@ The map from projy (P) to the standard A-Borel space F'(Y') sending
x € projx (P) to cl(Py) is \-Borel.
© There is a sequence (¢!),e., of A\-Borel functions ¢I: projy(P) — Y
such that for all x € projy (P) the set {¢F(z) | n € w} is dense in P,.

A

L. Motto Ros (Turin, ltaly) Uniformization in GDST Bristol, 8.2.2024 11 /17



Countable vertical sections

Let X be standard \-Borel, Y be A-Polish, and P C X x Y a \-Borel set
with countable vertical sections. Then:
© There is a A\-Borel uniformization of P.
[Equivalently: projy(P) is A-Borel and there is a A-Borel uniformizing
function f: projy (P) — Y for P.]
@ The map from projy (P) to the standard A-Borel space F'(Y') sending
x € projx (P) to cl(Py) is \-Borel.
© There is a sequence (¢!),e., of A\-Borel functions ¢I: projy(P) — Y
such that for all x € projy (P) the set {¢F(z) | n € w} is dense in P,.
@ There is a sequence (o), of A\-Borel functions ¢! : projy (P) — Y
such that P, = {0 | n € w} for all z € projx(P).

A
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Countable vertical sections

Let X be standard \-Borel, Y be A-Polish, and P C X x Y a \-Borel set
with countable vertical sections. Then:
© There is a A\-Borel uniformization of P.
[Equivalently: projy(P) is A-Borel and there is a A-Borel uniformizing
function f: projy (P) — Y for P.]
@ The map from projy (P) to the standard A-Borel space F'(Y') sending
x € projx (P) to cl(Py) is \-Borel.
© There is a sequence (¢!),e., of A\-Borel functions ¢I: projy(P) — Y
such that for all x € projy (P) the set {¢F(z) | n € w} is dense in P,.
@ There is a sequence (o), of A\-Borel functions ¢! : projy (P) — Y
such that P, = {0 | n € w} for all z € projx(P).
© The set P can be written as P = J,,, P where the sets P, are
pairwise disjoint A-Borel sets with vertical sections of size 1.

A
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Countable vertical sections

The proof is radically different from the classical one because we lack a
Baire category notion matching well with that of A\-Borel sets. Instead, we
use an easy uniformization theorem and a “change of topology” argument.
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Countable vertical sections

The proof is radically different from the classical one because we lack a
Baire category notion matching well with that of A-Borel sets. Instead, we
use an easy uniformization theorem and a “change of topology” argument.

Proposition

Let X be a standard \-Borel space, Z a \-Polish space, and F C X x Z a
A-Borel set such that each of its nonempty vertical sections F, C Z has an
isolated point. Then F' has a A-Borel uniformization.
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Countable vertical sections

The proof is radically different from the classical one because we lack a
Baire category notion matching well with that of A-Borel sets. Instead, we
use an easy uniformization theorem and a “change of topology” argument.

Proposition

Let X be a standard \-Borel space, Z a \-Polish space, and F C X x Z a
A-Borel set such that each of its nonempty vertical sections F, C Z has an
isolated point. Then F' has a A-Borel uniformization.

Let P C X x Y be \-Borel and with countable vertical sections. Pick a
closed set F' C X x “X and a A-Borel isomorphism f: F' — P such that

projx (w) = projx (f(w)) for all w € F.
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Countable vertical sections

The proof is radically different from the classical one because we lack a
Baire category notion matching well with that of A-Borel sets. Instead, we
use an easy uniformization theorem and a “change of topology” argument.

Proposition

Let X be a standard \-Borel space, Z a \-Polish space, and F C X x Z a
A-Borel set such that each of its nonempty vertical sections F, C Z has an
isolated point. Then F' has a A-Borel uniformization.

Let P C X x Y be \-Borel and with countable vertical sections. Pick a
closed set F' C X x “X and a A-Borel isomorphism f: F' — P such that
proj x (w) = projx (f(w)) for all w € F. All nonempty vertical sections F,
of F' are closed and countable, hence Polish (in the classical sense!).
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Countable vertical sections

The proof is radically different from the classical one because we lack a
Baire category notion matching well with that of A-Borel sets. Instead, we
use an easy uniformization theorem and a “change of topology” argument.

Proposition

Let X be a standard \-Borel space, Z a A-Polish space, and F C X x Z a
A-Borel set such that each of its nonempty vertical sections F, C Z has an
isolated point. Then F' has a A-Borel uniformization.

Let P C X x Y be \-Borel and with countable vertical sections. Pick a
closed set F' C X x “X and a A-Borel isomorphism f: F' — P such that
proj x (w) = projx (f(w)) for all w € F. All nonempty vertical sections F,
of I are closed and countable, hence Polish (in the classical sense!). By
countability, each F}, has an isolated point, hence we can apply the
proposition.
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Countable vertical sections

The proof is radically different from the classical one because we lack a
Baire category notion matching well with that of A-Borel sets. Instead, we
use an easy uniformization theorem and a “change of topology” argument.

Proposition

Let X be a standard \-Borel space, Z a A-Polish space, and F C X x Z a
A-Borel set such that each of its nonempty vertical sections F, C Z has an
isolated point. Then F' has a A-Borel uniformization.

Let P C X x Y be \-Borel and with countable vertical sections. Pick a
closed set F' C X x “X and a A-Borel isomorphism f: F' — P such that
proj x (w) = projx (f(w)) for all w € F. All nonempty vertical sections F,
of I are closed and countable, hence Polish (in the classical sense!). By
countability, each F}, has an isolated point, hence we can apply the
proposition. Let F* be a A-Borel uniformization of F: then P* = f(F™) is
a A\-Borel uniformization of P. [ (part @)
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Countable vertical sections

Proposition

Let E be an equivalence relation on a standard \-Borel space X that can
be written as E = Ua<# P, withw < pp < X and each P, a A\-Borel set
with vertical sections of size 1. Then there is a (discrete) group G of size
< w acting on X by A-Borel isomorphisms (in fact, involutions) which
generates E. If moreover u > w, then E is hyper-u-small.
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Countable vertical sections

Proposition

Let E be an equivalence relation on a standard \-Borel space X that can
be written as E = Ua<# P, withw < pp < X and each P, a A\-Borel set
with vertical sections of size 1. Then there is a (discrete) group G of size
< w acting on X by A-Borel isomorphisms (in fact, involutions) which
generates E. If moreover u > w, then E is hyper-u-small.

Generalized Feldman-Moore Theorem

Let X be a standard \-Borel space. Then E is a countable A\-Borel
equivalence relation on X if and only if it is the orbit equivalence relation
induced by a A-Borel action of a countable (discrete) group G on X.
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Compact vertical sections

Let X be a standard \-Borel space, Y a A-Polish space, and P C X x Y a
A-Borel set with compact vertical sections. Then:

A
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Compact vertical sections

Let X be a standard \-Borel space, Y a A-Polish space, and P C X x Y a
A-Borel set with compact vertical sections. Then:

@ There is a A\-Borel uniformization of P.
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Compact vertical sections

Let X be a standard \-Borel space, Y a A-Polish space, and P C X x Y a
A-Borel set with compact vertical sections. Then:

@ There is a A\-Borel uniformization of P.
@ The map from projy(P) to K(Y) C F(Y) sending x € projx(P) to
P, is A-Borel.
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Compact vertical sections

Let X be a standard \-Borel space, Y a A-Polish space, and P C X x Y a
A-Borel set with compact vertical sections. Then:

@ There is a A\-Borel uniformization of P.
@ The map from projy(P) to K(Y) C F(Y) sending x € projx(P) to
P, is A-Borel.

© There is a sequence (¢!),e., of A\-Borel functions ¢I': projy(P) — Y
such that for all x € projy (P) the set {¢F'(x) | n € w} is dense in P,.
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Compact vertical sections

Let X be a standard \-Borel space, Y a A-Polish space, and P C X x Y a
A-Borel set with compact vertical sections. Then:

@ There is a A\-Borel uniformization of P.
@ The map from projy(P) to K(Y) C F(Y) sending x € projx(P) to
P, is A-Borel.

© There is a sequence (¢!),e., of A\-Borel functions ¢I': projy(P) — Y
such that for all x € projy (P) the set {¢F'(x) | n € w} is dense in P,.

Q@ There is a sequence (0%),<on0 of A-Borel maps of: projx(P) =Y
such that P, = {0 | a < 2%} for all z € projy (P).

[Recall that w < 2% < X by choice of ]
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Compact vertical sections

Let X be a standard \-Borel space, Y a A-Polish space, and P C X x Y a
A-Borel set with compact vertical sections. Then:

@ There is a A\-Borel uniformization of P.
@ The map from projy(P) to K(Y) C F(Y) sending x € projx(P) to
P, is A-Borel.

© There is a sequence (¢!),e., of A\-Borel functions ¢I': projy(P) — Y
such that for all x € projy (P) the set {¢F'(x) | n € w} is dense in P,.

Q@ There is a sequence (0%),<on0 of A-Borel maps of: projx(P) =Y
such that P, = {0 | a < 2%} for all z € projy (P).

[Recall that w < 2% < X by choice of ]

© The set P can be written as P = |, 9%, Pa Where the sets P, are
pairwise disjoint A-Borel sets with vertical sections of size 1.

A
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Compact vertical sections

The classical proof uses compactification, which is out of reach here

because our spaces are not separable. So we had to develop a quite
different machinery.
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The classical proof uses compactification, which is out of reach here

because our spaces are not separable. So we had to develop a quite
different machinery.

If E is a A\-Borel equivalence relation on a A-Polish space X and all its

classes are compact, then E is A-smooth (= A-Borel reducible to identity on a
A-Polish space).
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Compact vertical sections

The classical proof uses compactification, which is out of reach here
because our spaces are not separable. So we had to develop a quite
different machinery.

If E is a A\-Borel equivalence relation on a A-Polish space X and all its
classes are compact, then E is A-smooth (= A-Borel reducible to identity on a
A-Polish space).

Recall that w < 280 < \.

Corollary (“half” Feldman-Moore Theorem)

Let E be a A-Borel equivalence relation on a A\-Polish space X such that
all its classes are compact. Then E is the orbit equivalence relation induced
by a A-Borel action on X of a (discrete) group G of size 280,
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Compact vertical sections

The classical proof uses compactification, which is out of reach here
because our spaces are not separable. So we had to develop a quite
different machinery.

If E is a A\-Borel equivalence relation on a A-Polish space X and all its
classes are compact, then E is A-smooth (= A-Borel reducible to identity on a
A-Polish space).

Recall that w < 280 < \.

Corollary (“half” Feldman-Moore Theorem)

Let E be a A-Borel equivalence relation on a A\-Polish space X such that
all its classes are compact. Then E is the orbit equivalence relation induced
by a A-Borel action on X of a (discrete) group G of size 280,

Moreover, E is hyper-2Xo-small.
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What's next?

There are other “smallness conditions” that could be considered here:
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What's next?

There are other “smallness conditions” that could be considered here:
© o-compact
Q size < )\
O closed A-Lindelof
@ )-sized union of compact sets

© )-sized union of closed A-Lindelof sets

In the classical setting, the most general result is provided by the
o-compact case. Here instead we have:
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What's next?

There are other “smallness conditions” that could be considered here:
© o-compact
Q size < )\
O closed A-Lindelof
@ )-sized union of compact sets

© )-sized union of closed A-Lindelof sets

In the classical setting, the most general result is provided by the
o-compact case. Here instead we have:

Proposition

If a A-Polish space X is A-Lindelof, then X is well-orderable and | X| < A.
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What's next?

There are other “smallness conditions” that could be considered here:
© o-compact
Q size < )\
O closed A-Lindelof
@ )-sized union of compact sets

© )-sized union of closed A-Lindelof sets

In the classical setting, the most general result is provided by the
o-compact case. Here instead we have:

Proposition

If a A-Polish space X is A-Lindelof, then X is well-orderable and | X| < A.

Hence the more general case is given by @ (which is equivalent to @ and

Q).
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What's next?

There are other “smallness conditions” that could be considered here:
© o-compact
Q size < )\
O closed A-Lindelof
@ )-sized union of compact sets

© )-sized union of closed A-Lindelof sets

In the classical setting, the most general result is provided by the
o-compact case. Here instead we have:

Proposition

If a A-Polish space X is A-Lindelof, then X is well-orderable and | X| < A.

Hence the more general case is given by @ (which is equivalent to @ and
@). This is still work in progress...

...more on the blackboard!!
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Open problems

Open problems

Let A > w be singular and such that 2<* = \.

N,
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Open problems

Open problems
Let A > w be singular and such that 2<* = \.

@ Can we have “large section” uniformization results, too?

[Meta-problem: Are there interesting A-ideals to play with?]

N,
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Open problems

Open problems

Let A > w be singular and such that 2<* = \.

@ Can we have “large section” uniformization results, too?

[Meta-problem: Are there interesting A-ideals to play with?]

@ What about cardinals A with uncountable cofinality?

[This case seems to be much closer to the regular one, so we mostly
expect negative results.]

N,
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Open problems

Open problems

Let A > w be singular and such that 2<* = \.

@ Can we have “large section” uniformization results, too?

[Meta-problem: Are there interesting A-ideals to play with?]

@ What about cardinals A with uncountable cofinality?

[This case seems to be much closer to the regular one, so we mostly
expect negative results.]

N,

Thank you for your attention!
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