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The spectrum fuction

Let T be a countable theory over a countable language.

Let
I(T , α) denote the number of non-isomorphic models of T with
cardinality α.

What is the behavior of I(T , α)?
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Categoricity

I 1915 - 1920: Löwenheim-Skolem Theorem.

I 1929: Gödel’s completeness theorem.

I 1965: Morley’s categoricity theorem.

I 1960’s: Let T be a first-order countable theory over a
countable language. For all ℵ0 < λ < κ,

I(T , λ) ≤ I(T , κ).
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Shelah’s Main Gap Theorem

Theorem (Shelah 1990)
Either, for every uncountable cardinal α, I(T , α) = 2α; or ∀α > 0,
I(T ,ℵα) < iω1(| α |).

If T has less models than T ′, then T is less complex than T ′ and
their complexity are not close.
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Non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory
that satisfies one of the following:
I T is unstable;

I T is stable unsuperstable;
I T is superstable with DOP;
I T is superstable with OTOP.
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Classifiable theories

Classifiable are divided into:
I shallow,

I(T ,ℵα) < iω1(| α |);

I non-shallow,
I(T , α) = 2α.

If T is classifiable and T ′ is not, then T is less complex than T ′
and their complexity are not close.
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Descriptive Set Theory

I 1989: Friedman and Stanley introduced the Borel reducibility
between classes of countable structures.

I 1993: Mekler-Väänänen κ-separation theorem.

I 2014: Friedman-Hyttinen-Kulikov developed GDST and a
systematic comparison between the Main Gap dividing lines
and the complexity given by Borel reducibility.
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The bounded topology

Let κ be an uncountable cardinal that satisfies κ<κ = κ.

We equip the set κκ with the bounded topology. For every
ζ ∈ κ<κ, the set

[ζ] = {η ∈ κκ | ζ ⊂ η}

is a basic open set.
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The Generalised Baire spaces

The generalised Baire space is the space κκ endowed with the
bounded topology.

The generalised Cantor space is the subspace 2κ.
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Coding structures

Let ω ≤ µ ≤ κ be a cardinal. Fix a relational language
L = {Pn|n < ω} and a bijection πµ between µ<ω and µ.

Definition
For every η ∈ κκ define the structure Aη�µ with domain µ as
follows: For every tuple (a1, a2, . . . , an) in µn

(a1, a2, . . . , an) ∈ PAη�µ
m ⇔ η(πµ(m, a1, a2, . . . , an)) > 0.
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The isomorphism relation

Definition
Let ω ≤ µ ≤ κ be a cardinal and T a first-order theory in a
relational countable language, we say that η, ξ ∈ κκ are ∼=µ

T
equivalent if one of the following holds:

I Aη�µ |= T ,Aξ�µ |= T ,Aη�µ ∼= Aξ�µ
I Aη�µ 6|= T ,Aξ�µ 6|= T
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Reductions

Let E1 and E2 be equivalence relations on κκ.

We say that E1 is
reducible to E2, if there is a function f : κκ → κκ that satisfies
(x , y) ∈ E1 ⇔ (f (x), f (y)) ∈ E2. We write E1 ↪→r E2.

We can use continuous functions to define a partial order on the
set of all first-order complete countable theories

T ≤κ T ′ iff ∼=T ↪→C ∼=T ′
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Question

Question: What can we say about the Borel-reducibility between
different dividing lines?

Conjecture: If T is classifiable and T ′ is non-classifiable, then
T ≤κ T ′ and T ′ 6≤κ T .
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Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)
Let κ = ℵγ be such that κ<κ = κ and iω1(|γ|) ≤ κ. Let T ,T ′ be
countable complete first-order theories, and suppose T is
classifiable and shallow, while T ′ is not. Then

∼=T ↪→B ∼=T ′

Fact (Mangraviti-Motto Ros)
Let E1 be a Borel equivalence relation with γ ≤ κ equivalence
classes and E2 be an equivalence relation with θ equivalence
classes. If γ ≤ θ, then E1 ↪→B E2.
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Counting α-classes relation

Let α < κ be an ordinal and 0 < % ≤ κ. η α% ξ if and only if one
of the following holds:

I % is finite:
I η(α) = ξ(α) < %− 1;
I η(α), ξ(α) ≥ %− 1.

I % is infinite:
I η(α) = ξ(α) < %;
I η(α), ξ(α) ≥ %.
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Gap: Shallow and Non-shallow

Theorem (M. 2023)
Suppose ℵµ = κ = λ+ = 2λ is such that iω1(| µ |) ≤ κ.

Let T0
and T1 be countable complete classifiable shallow theories such
that 1 < I(κ,T0) < I(κ,T1) = %, T2 be a countable complete
theory not classifiable shallow. Then

∼=T ↪→B 0% ↪→L ∼=T1 ↪→B 0κ ↪→L ∼=T2

and
∼=T2 6↪→r 0κ 6↪→r ∼=T1 6↪→C 0% 6↪→r ∼=T .
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Consistency

Theorem (Hyttinen - Kulikov - M. 2017)
Suppose κ = λ+, 2λ > 2ω, and λ<λ = λ. There is a κ-closed
κ+-cc forcing which forces:

If T is classifiable and T ′ is
non-classifiable, then T ≤κ T ′ and T ′ 6≤κ T .

Theorem (Hyttinen - Kulikov - M. 2017)
Suppose κ = λ+, 2λ > 2ω, and λω = λ. If T is classifiable and T ′
is stable unsuperstable, then T ≤κ T ′ and T ′ 6≤κ T .
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Borel-reducibility Main Gap

Theorem (M. 2023)
Let c = 2ω. Suppose κ = λ+ = 2λ and 2c ≤ λ = λω1 .

If T is a
classifiable theory, and T ′ is a non-classifiable theory, then
T ≤κ T ′ and T ′ 6≤κ T .
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Equivalence modulo γ cofinality

Definition
We define the equivalence relation =2

γ ⊆ 2κ × 2κ, as follows: let
S = {α < κ | cf (α) = γ},

η =2
γ ξ ⇐⇒ {α < κ | η(α) 6= ξ(α)} ∩ S is non-stationary.
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∼=T ↪→C =2
µ, κ = λ+

Theory λ = λγ ♦λ Dl∗Sκ
γ

(Π1
1)

Classifiable ω ≤ µ ≤
γ

µ = λ µ = γ

Non-
classifiable

Indep Indep µ = γ
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=2
µ ↪→C ∼=T , κ = λ+

Theory λ = λγ 2c ≤ λ =
λγ

2c ≤ λ =
λ<λ

& ♦λ
Stable

Unsuper-
stable

µ = ω µ = ω µ = ω

Unstable ω ≤ µ ≤
γ

ω ≤ µ ≤
γ

ω ≤ µ ≤
λ

Superstable
with

OTOP

ω ≤ µ ≤
γ

ω ≤ µ ≤
γ

ω ≤ µ ≤
λ

Superstable
with DOP

? ω1 ≤ µ ≤
γ

ω1 ≤ µ ≤
λ
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A bigger Gap

Theorem (M. 2023)
Suppose κ is inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λω1 .
There exists a cofinality-preserving forcing extension in which the
following holds:

If T1 is classifiable and T2 is not. Then there is a regular cardinal
γ < κ such that, if X , Y ⊆ Sκγ are stationary and disjoint, then
=2

X and =2
Y are strictly in between ∼=T1 and ∼=T2 .
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Main Gap Dichotomy

Theorem (M. 2023)
Let κ be inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 . There
exists a < κ-closed κ+-cc forcing extension in which for any
countable first-order theory in a countable vocabulary (not
necessarily complete), T , one of the following holds:

I ∼=T is ∆1
1(κ);

I ∼=T is Σ1
1(κ)-complete.
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Non-classifiable theories

Lemma (M. 2023)
Let κ be strongly inaccessible, or κ = λ+ = 2λ and 2c ≤ λ = λ<ω1 .
For all cardinals ℵ0 < µ < δ < κ, if T is a non-classifiable theory
then

∼=µ
T ↪→C ∼=δ

T ↪→C id ↪→C ∼=T .
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Classifiable non-shallow

Lemma (M. 2023)
Suppose κ = λ+ = 2λ. The following reduction is strict. Let
2c ≤ λ = λ<ω1 . If T1 is a classifiable non-shallow theory and T2 is
a non-classifiable theory, then

∼=λ
T2 ↪→C ∼=T1 ↪→C ∼=T2 .
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Classifiable shallow

Lemma (M. 2023)
Suppose κ = λ+ = 2λ. The following reductions are strict.
Let κ = ℵγ be such that iω1(| γ |) ≤ κ. Suppose T1 is a
classifiable shallow theory, T2 a classifiable non-shallow theory, and
T3 non-classifiable theory. Then

∼=T1 ↪→B ∼=λ
T3 ↪→C ∼=T2 .
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Detailed

Theorem (M. 2023)
Let c = 2ω. Suppose κ = λ+ = 2λ and 2c ≤ λ = λω1 .

If T is a
classifiable theory, and T ′ is a non-classifiable theory, then there is
γ < κ such that

∼=T ↪→C =2
γ ↪→C ∼=T ′ and =2

γ 6↪→B ∼=T .
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Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)
Assume T is a classifiable theory and let
S = {α < κ | cf (α) = γ}. If ♦S holds, then ∼=T ↪→C =2

γ .

Theorem (Friedman - Hyttinen - Kulikov 2014)
If T is a classifiable theory and γ < κ is regular, then =2

γ 6↪→B ∼=T .

Miguel Moreno (UH) 7WGBS
The Borel reducibility Main Gap 28 of 45



History GDST The Gap Proof The order

Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)
Assume T is a classifiable theory and let
S = {α < κ | cf (α) = γ}. If ♦S holds, then ∼=T ↪→C =2

γ .

Theorem (Friedman - Hyttinen - Kulikov 2014)
If T is a classifiable theory and γ < κ is regular, then =2

γ 6↪→B ∼=T .

Miguel Moreno (UH) 7WGBS
The Borel reducibility Main Gap 28 of 45



History GDST The Gap Proof The order

Blue print of the proof

I Construct the reductions.

I Construct Ehrenfeucht-Mostowski models, such that

f =2
γ g iff Mf ∼=Mg .

I Construct ordered trees, such that

f =2
γ g ⇔ Af ∼= Ag .
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κ+, (γ + 2)-tree∗

Let γ < κ be a regular cardinal. A κ+, (γ + 2)-tree∗ t is a tree
with the following properties:
I t has a unique root.

I Every element of t has less than κ+ immediate successors.

I All the branches of t have order type γ or γ + 1.

I Every chain of length less than γ has a unique limit.
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Isomorphism of κ+, (γ + 2)-tree∗

Lemma (Hyttinen - Kulikov - M.)
Suppose γ < κ is such that for all ε < κ, εγ < κ. For every
f , g ∈ 2κ there are κ+, (γ + 2)-trees∗ Jf and Jg such that

f =2
γ g ⇔ Jf ∼=ct Jg

where ∼=ct is the isomorphism of κ+, (γ + 2)-tree∗.
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Ordered trees

Definition
Let γ < κ be a regular cardinal and I a linear order. (A,≺, <) is
an ordered tree if the following holds:
I (A,≺) is a κ+, (γ + 2)-tree∗.

I for all x ∈ A, (succ(x), <) is isomorphic to I.
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Let γ < κ be a regular cardinal and I a linear order. (A,≺, <) is
an ordered tree if the following holds:
I (A,≺) is a κ+, (γ + 2)-tree∗.
I for all x ∈ A, (succ(x), <) is isomorphic to I.

Miguel Moreno (UH) 7WGBS
The Borel reducibility Main Gap 32 of 45



History GDST The Gap Proof The order

κ-colorable

Definition
Let I be a linear order of size κ. We say that I is κ-colorable if
there is a function F : I → κ such that for all B ⊆ I, |B| < κ,
b ∈ I\B, and p = tpbs(b,B, I) such that the following hold: For all
α ∈ κ,

|{a ∈ I | a |= p & F (a) = α}| = κ.
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Isomorphism of ordered trees

Theorem (M. 2023)
Suppose γ < κ is such that for all ε < κ, εγ < κ, and there is a
κ-colorable linear order I.

For all f ∈ 2κ there is an ordered tree Af
such that for all f , g ∈ 2κ,

f =2
γ g ⇔ Af ∼= Ag .
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The models

Example of DOP.

Suppose T is superstable with DOP in a countable relational
vocabulary τ . Let τ1 be a Skolemization of τ , and T 1 be a
complete theory in τ1 extending T and with Skolem-functions in τ .
Then for every f ∈ 2κ we want a model Mf

1 |= T 1 with the
following properties.
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The models

1. There is a map H : Af → (dom Mf
1)n for some n < ω,

η 7→ aη, such that Mf
1 is the Skolem hull of {aη | η ∈ Af }.

Let us denote {aη | η ∈ Af } by Sk(Mf
1).

2. Mf =Mf
1 � τ is a model of T .

3. Sk(Mf
1) is indiscernible in Mf

1 relative to Lω1ω1 , i.e. if
tpat(s̄, ∅,Af ) = tpat(s̄ ′, ∅,Af ), then
tp∆(ās̄ , ∅,Mf

1) = tp∆(ās̄′ , ∅,Mf
1), where ∆ = Lω1ω1 .

4. There is a formula ϕ ∈ Lω1ω1(τ) such that for all η, ν ∈ Af
and m < γ, if Af |= Pm(η) ∧ Pγ(ν), then Mf |= ϕ(aν , aη) if
and only if Af |= η ≺ ν.
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Coding trees

For every f ∈ 2κ let us define the order K D(f ) by:
I. dom K D(f ) = (dom Af × {0}) ∪ (dom Af × {1}).

II. For all η ∈ Af , (η, 0) <KD(f ) (η, 1).

III. If η, ξ ∈ Af , then η ≺ ξ if and only if

(η, 0) <KD(f ) (ξ, 0) <KD(f ) (ξ, 1) <KD(f ) (η, 1).

IV. If η, ξ ∈ Af , then η < ξ if and only if (η, 1) <KD(f ) (ξ, 0).
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ε-dense

Definition
Let I be a linear order of size κ and ε a regular cardinal smaller
than κ. We say that I is ε-dense if the following holds.

If A,B ⊆ I are subsets of size less than ε such that for all a ∈ A
and b ∈ B, a < b, then there is c ∈ I, such that for all a ∈ A and
b ∈ B, a < c < b.
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The isomorphism theorem

Theorem (M. 2023)
Suppose T is a non-classifiable first order theory in a countable
relational vocabulary τ . If I is (κ, ε)-nice and (< κ)-stable, then
for all f , g ∈ 2κ

f =2
γ g iff Mf ∼=Mg .
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Blue print of the proof

I Construct an ε-dense, (κ, ε)-nice, (< κ)-stable, and
κ-colorable linear order.

I Construct ordered trees from the linear order.

I Construct skeletons from ordered trees, to construct
Ehrenfeucht-Mostowski models.

I Prove the isomorphism theorem.

I Construct the reductions.
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Existence

Let θ < κ be the smallest cardinal such that there is a ε-dense
model of DLO of size θ.

Theorem (M. 2023)
Suppose κ is inaccessible, or κ = λ+, 2θ ≤ λ = λ<ε. There is a
ε-dense, (κ, ε)-nice, (< κ)-stable, and κ-colorable linear order.
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Construction

Let Q be a model of DLO of size θ < κ, that is ε-dense.

Definition
Let κ×Q be ordered by the lexicographic order,

I0 be the set of
functions f : ε→ κ×Q such that f (α) = (f1(α), f2(α)), for which
|{α ∈ ε | f1(α) 6= 0}| is smaller than ε.
If f , g ∈ I0, then f < g if and only if f (α) < g(α), where α is the
least number such that f (α) 6= g(α).
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Construction

Let us fix τ ∈ Q. Let I be the set of functions
f : ε→ ({0} × I0) ∪ (κ×Q) such that the following hold:

I f � {0} : {0} → {0} × I0.
I f � ε\{0} : ε\{0} → κ×Q.
I There is α < ε ordinal such that ∀β > α, f (β) = (0, τ). We

say that the least α with such property is the depth of f and
we denote it by dp(f );

I There are functions f1 : ε→ κ and f2 : ε→ I0 ∪Q such that
f (β) = (f1(β), f2(β)) and f1 � dp(f ) + 1 is strictly increasing.
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Construction

We say that f < g if and only if one of the following holds:

I f (0) 6= g(0) and f2(0) < g2(0);
I let α = dp(g), ∀β ≤ α, f (β) = g(β) and f1(α + 1) 6= 0;
I exists α > 0 such that ∀β < α, f (β) = g(β), and

f1(α), g1(α) 6= 0 and g(α) > f (α).
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Thank you

Article at: https://arxiv.org/abs/2308.07510
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