History	GDST	The Gap	Proof
00000	0000000	000000000000	000000000000

The Borel reducibility Main Gap

Miguel Moreno University of Helsinki

Seventh workshop on generalised Baire spaces Bristol

8 February, 2024

	7WGBS
p	1 of 45

Miguel Moreno (UH) The Borel reducibility Main Gap

History	GDST	The Gap	Proof	The order
●0000	0000000	000000000000	000000000000000	0000

The spectrum fuction

Let T be a countable theory over a countable language.

Miguel Moreno (UH)	7WGBS
The Borel reducibility Main Gap	2 of 45

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

History	GDST	The Gap	Proof	The order
●0000	0000000	000000000000	000000000000000	0000

The spectrum fuction

Let T be a countable theory over a countable language. Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

< 🗇 🕨

-∢ ⊒ →

The spectrum fuction

Let T be a countable theory over a countable language. Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

History	GDST	The Gap	Proof	The order
0●000	0000000	0000000000000	000000000000000	0000
Categori	city			

▶ 1915 - 1920: Löwenheim-Skolem Theorem.

Miguel N

The Bore

Moreno (UH)	7WGBS
rel reducibility Main Gap	3 of 45

History	GDST	The Gap	Proof	The order
o●ooo	0000000	0000000000000	000000000000000	0000
Catego	vicity			

▶ 1915 - 1920: Löwenheim-Skolem Theorem.

▶ **1929:** Gödel's completeness theorem.

	_	_	
Miguel Moreno (UH)			7WGBS
The Borel reducibility Main Gap			3 of 45

Mi Th ▶ 1915 - 1920: Löwenheim-Skolem Theorem.

▶ **1929:** Gödel's completeness theorem.

▶ **1965:** Morley's categoricity theorem.

	 _	
iguel Moreno (UH)		7WGBS
ne Borel reducibility Main Gap		3 of 45

- ▶ 1915 1920: Löwenheim-Skolem Theorem.
- ▶ **1929:** Gödel's completeness theorem.
- ▶ **1965:** Morley's categoricity theorem.
- ▶ **1960's:** Let *T* be a first-order countable theory over a countable language.

- ▶ 1915 1920: Löwenheim-Skolem Theorem.
- ▶ **1929:** Gödel's completeness theorem.
- ▶ **1965:** Morley's categoricity theorem.
- ▶ 1960's: Let T be a first-order countable theory over a countable language. For all ℵ₀ < λ < κ,</p>

$$I(T,\lambda) \leq I(T,\kappa).$$

Shelah's Main Gap Theorem

Theorem (Shelah 1990)

Either, for every uncountable cardinal α , $I(T, \alpha) = 2^{\alpha}$; or $\forall \alpha > 0$, $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$.

(a)

Shelah's Main Gap Theorem

Theorem (Shelah 1990)

Either, for every uncountable cardinal α , $I(T, \alpha) = 2^{\alpha}$; or $\forall \alpha > 0$, $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$.

If T has less models than T', then T is less complex than T' and their complexity are not close.

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

T is unstable;

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable;
- T is stable unsuperstable;

Image: A math a math

- ∢ ⊒ →

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable;
- T is stable unsuperstable;
- T is superstable with DOP;

Image: A math a math

< 3

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable;
- T is stable unsuperstable;
- T is superstable with DOP;
- ► *T* is superstable with OTOP.

< 3

History	GDST	The Gap	Proof	The order
0000●	0000000	000000000000	000000000000000	0000

Classifiable theories

Classifiable are divided into:

shallow,

 $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(\mid \alpha \mid);$

Miguel Moreno (UH) The Borel reducibility Main Gap 7WGBS 6 of 45

æ

Classifiable theories

Classifiable are divided into:

shallow,

$$I(T, \aleph_{\alpha}) < \beth_{\omega_1}(\mid \alpha \mid);$$

non-shallow,

$$I(T,\alpha)=2^{\alpha}.$$

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Image: A math a math

- ∢ ⊒ →

Descriptive Set Theory

1989: Friedman and Stanley introduced the Borel reducibility between classes of countable structures.

Descriptive Set Theory

- ▶ **1989:** Friedman and Stanley introduced the Borel reducibility between classes of countable structures.
- **1993:** Mekler-Väänänen *κ*-separation theorem.

Descriptive Set Theory

- ▶ **1989:** Friedman and Stanley introduced the Borel reducibility between classes of countable structures.
- **1993:** Mekler-Väänänen *κ*-separation theorem.
- 2014: Friedman-Hyttinen-Kulikov developed GDST and a systematic comparison between the Main Gap dividing lines and the complexity given by Borel reducibility.

History	GDST	The Gap	Proof	The order
00000	0●00000	0000000000000	0000000000000000000	0000

The bounded topology

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

Miguel Moreno (UH)	7WGBS
The Borel reducibility Main Gap	8 of 45

The bounded topology

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^κ with the bounded topology. For every $\zeta\in\kappa^{<\kappa},$ the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

イロト イボト イヨト イヨ

The Generalised Baire spaces

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

イロト イヨト イヨト イヨ

The Generalised Baire spaces

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

The generalised Cantor space is the subspace 2^{κ} .

Image: A math a math

History	GDST	The Gap	Proof	The order
00000	000●000	000000000000	000000000000000	0000

Coding structures

Let $\omega \leq \mu \leq \kappa$ be a cardinal. Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$ and a bijection π_{μ} between $\mu^{<\omega}$ and μ .

History	GDST	The Gap	Proof	The order
00000	000●000	0000000000000	0000000000000000	0000

Coding structures

Let $\omega \leq \mu \leq \kappa$ be a cardinal. Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$ and a bijection π_{μ} between $\mu^{<\omega}$ and μ .

Definition

For every $\eta \in \kappa^{\kappa}$ define the structure $\mathcal{A}_{\eta \restriction \mu}$ with domain μ as follows: For every tuple (a_1, a_2, \ldots, a_n) in μ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta} \restriction \mu} \Leftrightarrow \eta(\pi_\mu(m, a_1, a_2, \ldots, a_n)) > 0.$$

The isomorphism relation

Definition

Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language, we say that $\eta, \xi \in \kappa^{\kappa}$ are \cong^{μ}_{T} equivalent if one of the following holds:

The isomorphism relation

Definition

Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language, we say that $\eta, \xi \in \kappa^{\kappa}$ are \cong^{μ}_{T} equivalent if one of the following holds:

$$\blacktriangleright \ \mathcal{A}_{\eta\restriction\mu}\models \mathsf{T}, \mathcal{A}_{\xi\restriction\mu}\models \mathsf{T}, \mathcal{A}_{\eta\restriction\mu}\cong \mathcal{A}_{\xi\restriction\mu}$$

The isomorphism relation

Definition

Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language, we say that $\eta, \xi \in \kappa^{\kappa}$ are \cong^{μ}_{T} equivalent if one of the following holds:

$$\begin{array}{l} \blacktriangleright \quad \mathcal{A}_{\eta \restriction \mu} \models \mathcal{T}, \mathcal{A}_{\xi \restriction \mu} \models \mathcal{T}, \mathcal{A}_{\eta \restriction \mu} \cong \mathcal{A}_{\xi \restriction \mu} \\ \blacktriangleright \quad \mathcal{A}_{\eta \restriction \mu} \nvDash \mathcal{T}, \mathcal{A}_{\xi \restriction \mu} \nvDash \mathcal{T} \end{array}$$

History	GDST	The Gap	Proof	The order
00000	00000●0	000000000000	000000000000000	0000

Miguel M The Borel

Let E_1 and E_2 be equivalence relations on κ^{κ} .

loreno (UH)	7WGBS
l reducibility Main Gap	12 of 45

1 N

History	GDST	The Gap	Proof	The order
00000	00000●0	0000000000000	000000000000000	0000

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *reducible* to E_2 , if there is a function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$.

< (日) × < 三 × <

History	GDST	The Gap	Proof	The order
00000	00000●0	0000000000000	0000000000000000000	0000

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *reducible* to E_2 , if there is a function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$. We write $E_1 \hookrightarrow_r E_2$.

< 同 ▶ < 三 ▶

History	GDST	The Gap	Proof	The order
00000	00000●0	000000000000	00000000000000	0000

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *reducible* to E_2 , if there is a function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$. We write $E_1 \hookrightarrow_r E_2$.

We can use continuous functions to define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T'$$
 iff $\cong_T \hookrightarrow_C \cong_{T'}$

< ロ > < 同 > < 三 > < 三 >

History 00000	GDST 000000●	The Gap 000000000000	Proof 000000000000000	The order 0000

Question

Question: What can we say about the Borel-reducibility between different dividing lines?

Miguel Moreno (UH)	7WGBS
The Borel reducibility Main Gap	13 of 45

イロン イロン イヨン イヨン

≣ ৩৭ে 7WGBS

History	GDST	The Gap	Proof	The order
00000	000000●	0000000000000	000000000000000	0000

Question

Question: What can we say about the Borel-reducibility between different dividing lines?

Conjecture: If T is classifiable and T' is non-classifiable, then $T \leq^{\kappa} T'$ and $T' \not\leq^{\kappa} T$.

History	GDST	The Gap	Proof	The order
00000	0000000	●00000000000	000000000000000	0000

Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_1}(|\gamma|) \le \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$\cong_T \hookrightarrow_B \cong_{T'}$$

History	GDST	The Gap	Proof	The order
00000	0000000	●000000000000	000000000000000	0000

Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_1}(|\gamma|) \le \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$\cong_T \hookrightarrow_B \cong_{T'}$$

Fact (Mangraviti-Motto Ros)

Let E_1 be a Borel equivalence relation with $\gamma \leq \kappa$ equivalence classes and E_2 be an equivalence relation with θ equivalence classes. If $\gamma \leq \theta$, then $E_1 \hookrightarrow_B E_2$.

14 of 45

History	GDST	The Gap	Proof	The order
00000	0000000	0●00000000000	000000000000000	0000

Counting α -classes relation

Let $\alpha < \kappa$ be an ordinal and $0 < \varrho \leq \kappa$. $\eta \alpha_{\varrho} \xi$ if and only if one of the following holds:

History	GDST	The Gap	Proof	The order
00000	0000000	0●00000000000	000000000000000	0000

Counting α -classes relation

Let $\alpha < \kappa$ be an ordinal and $0 < \varrho \leq \kappa$. $\eta \alpha_{\varrho} \xi$ if and only if one of the following holds:

 $\triangleright \varrho$ is finite:

$$\eta(\alpha) = \xi(\alpha) < \varrho - 1; \eta(\alpha), \xi(\alpha) \ge \varrho - 1.$$

History	GDST	The Gap	Proof	The order 0000

Counting α -classes relation

Let $\alpha < \kappa$ be an ordinal and $0 < \varrho \leq \kappa$. $\eta \alpha_{\varrho} \xi$ if and only if one of the following holds:

 $\triangleright \varrho$ is finite:

$$\eta(\alpha) = \xi(\alpha) < \varrho - 1; \eta(\alpha), \xi(\alpha) \ge \varrho - 1.$$

ρ is infinite:

$$\eta(\alpha) = \xi(\alpha) < \varrho; \eta(\alpha), \xi(\alpha) \ge \varrho.$$

Miguel Moreno (UH) The Borel reducibility Main Gap

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	000000000000000	0000

Theorem (M. 2023) Suppose $\aleph_{\mu} = \kappa = \lambda^{+} = 2^{\lambda}$ is such that $\beth_{\omega_{1}}(|\mu|) \leq \kappa$.

liguel Moreno (UH)	7WGBS
he Borel reducibility Main Gap	16 of 45

History	GDST	The Gap	The order
		0000000000000	

Theorem (M. 2023)

Suppose $\aleph_{\mu} = \kappa = \lambda^{+} = 2^{\lambda}$ is such that $\beth_{\omega_{1}}(|\mu|) \leq \kappa$. Let T_{0} and T_{1} be countable complete classifiable shallow theories such that $1 < I(\kappa, T_{0}) < I(\kappa, T_{1}) = \varrho$, T_{2} be a countable complete theory not classifiable shallow.

History	GDST	The Gap	The order
		00000000000	

Theorem (M. 2023)

Suppose $\aleph_{\mu} = \kappa = \lambda^{+} = 2^{\lambda}$ is such that $\beth_{\omega_{1}}(|\mu|) \leq \kappa$. Let T_{0} and T_{1} be countable complete classifiable shallow theories such that $1 < I(\kappa, T_{0}) < I(\kappa, T_{1}) = \varrho$, T_{2} be a countable complete theory not classifiable shallow. Then

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} \mathsf{0}_{\varrho} \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}_1} \hookrightarrow_{\mathcal{B}} \mathsf{0}_{\kappa} \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}_2}$$

- 4 同 ト 4 三 ト 4 三 ト

History	GDST	The Gap	The order
		00000000000000	

Theorem (M. 2023)

Suppose $\aleph_{\mu} = \kappa = \lambda^{+} = 2^{\lambda}$ is such that $\beth_{\omega_{1}}(|\mu|) \leq \kappa$. Let T_{0} and T_{1} be countable complete classifiable shallow theories such that $1 < I(\kappa, T_{0}) < I(\kappa, T_{1}) = \varrho$, T_{2} be a countable complete theory not classifiable shallow. Then

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} \mathbf{0}_{\varrho} \, \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}_1} \hookrightarrow_{\mathcal{B}} \mathbf{0}_{\kappa} \, \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}_2}$$

and

$$\cong_{T_2} \not\hookrightarrow_r \ \mathbf{0}_{\kappa} \not\hookrightarrow_r \cong_{T_1} \not\hookrightarrow_C \ \mathbf{0}_{\varrho} \not\hookrightarrow_r \cong_T.$$

Miguel Moreno (UH)	7WGBS
	/ WGDS
The Borel reducibility Main Gap	16 of 45

・ロン ・四 と ・ ヨン ・ ヨ

History	GDST	The Gap	Proof	The order
00000	0000000	000●000000000	000000000000000	0000
.				

Consistency

Theorem (Hyttinen - Kulikov - M. 2017) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. There is a κ -closed κ^+ -cc forcing which forces:

イロト イポト イヨト イヨト

7WGBS

17 of 45

History	GDST	The Gap	Proof	The order
00000	0000000	000●00000000	00000000000000	0000

Consistency

Theorem (Hyttinen - Kulikov - M. 2017) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. There is a κ -closed κ^+ -cc forcing which forces: If T is classifiable and T' is non-classifiable, then $T \leq^{\kappa} T'$ and $T' \nleq^{\kappa} T$.

< ロ > < 同 > < 三 > < 三 >

History	GDST	The Gap	Proof	The order
00000	0000000	000●00000000	00000000000000	0000

Consistency

Theorem (Hyttinen - Kulikov - M. 2017) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. There is a κ -closed κ^+ -cc forcing which forces: If T is classifiable and T' is non-classifiable, then $T \leq^{\kappa} T'$ and $T' \not\leq^{\kappa} T$.

Theorem (Hyttinen - Kulikov - M. 2017) Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{\omega} = \lambda$. If T is classifiable and T' is stable unsuperstable, then $T \leq^{\kappa} T'$ and T' $\not\leq^{\kappa} T$.

< ロ > < 同 > < 三 > < 三 >

History	GDST	The Gap	The order
		000000000000	

Borel-reducibility Main Gap

Theorem (M. 2023) Let $\mathfrak{c} = 2^{\omega}$. Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$.

イロト イヨト イヨト イヨト

Ξ.

Borel-reducibility Main Gap

Theorem (M. 2023)

Let $\mathfrak{c} = 2^{\omega}$. Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then $T \leq^{\kappa} T'$ and $T' \not\leq^{\kappa} T$.

Equivalence modulo γ cofinality

Definition

We define the equivalence relation $=_{\gamma}^2 \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let $S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \}$,

 $\eta =_{\gamma}^{2} \xi \iff \{ \alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha) \} \cap S \text{ is non-stationary.}$

History	GDST	The Gap	Proof	The order
00000	0000000	000000●000000	000000000000000	0000
	C			

$$\cong_T \hookrightarrow_C =^2_\mu, \ \kappa = \lambda^+$$

Theory	$\lambda = \lambda^{\gamma}$	\Diamond_{λ}	$Dl^*_{\mathcal{S}^\kappa_\gamma}(\Pi^1_1)$
Classifiable	$\omega \le \mu \le$	$\mu = \lambda$	$\mu = \gamma$
	γ		
Non-	Indep	Indep	$\mu = \gamma$
classifiable			

æ.

▲□▶ ▲圖▶ ▲園▶ ▲園▶

History 00000	GDST 0000000	The Gap 0000000●00000	Proof 000000000000000	
0				

$$=^2_{\mu} \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}}, \kappa = \lambda^+$$

Theory	$\lambda = \lambda^{\gamma}$	$2^{\mathfrak{c}} \leq \lambda =$	$2^{\mathfrak{c}} \leq \lambda =$
		λ^γ	$\lambda^{<\lambda}$
			$\& \diamondsuit_\lambda$
Stable	$\mu = \omega$	$\mu = \omega$	$\mu = \omega$
Unsuper-			
stable			
Unstable	$\omega \leq \mu \leq$	$\omega \leq \mu \leq$	$\omega \le \mu \le 0$
	γ	γ	λ
Superstable	$\omega \leq \mu \leq$	$\omega \leq \mu \leq$	$\omega \le \mu \le 0$
with	γ	γ	λ
ОТОР			
Superstable	?	$\omega_1 \leq \mu \leq$	$\omega_1 \leq \mu \leq 0$
with DOP		γ	λ

Miguel Moreno (UH)

The Borel reducibility Main Gap

æ.

イロン 不同 とくほと 不良 とう

History	GDST	The Gap	Proof	The order
00000	0000000	00000000●0000	0000000000000000000	0000

A bigger Gap

Theorem (M. 2023)

Suppose κ is inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$. There exists a cofinality-preserving forcing extension in which the following holds:

History	GDST	The Gap	Proof	The order
00000	0000000	00000000●0000	00000000000000000	0000

A bigger Gap

Theorem (M. 2023)

Suppose κ is inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$. There exists a cofinality-preserving forcing extension in which the following holds:

If T_1 is classifiable and T_2 is not. Then there is a regular cardinal $\gamma < \kappa$ such that, if $X, Y \subseteq S_{\gamma}^{\kappa}$ are stationary and disjoint, then $=_X^2$ and $=_Y^2$ are strictly in between \cong_{T_1} and \cong_{T_2} .

イロト 不得 トイヨト イヨト

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000000000000000000000000000	0000000000000000	0000

Main Gap Dichotomy

Theorem (M. 2023)

Let κ be inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

< ロ > < 同 > < 三 > < 三 >

History	GDST	The Gap	The order
		0000000000000	

Main Gap Dichotomy

Theorem (M. 2023)

Let κ be inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

$$\blacktriangleright \cong_T is \Delta^1_1(\kappa);$$

$$\blacktriangleright \cong_T$$
 is $\Sigma^1_1(\kappa)$ -complete.

< ロ > < 同 > < 三 > < 三 >

History	GDST	The Gap	The order
		00000000000000	

Non-classifiable theories

Lemma (M. 2023)

Let κ be strongly inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. For all cardinals $\aleph_0 < \mu < \delta < \kappa$, if T is a non-classifiable theory then

$$\cong^{\mu}_{T} \hookrightarrow_{C} \cong^{\delta}_{T} \hookrightarrow_{C} \text{ id } \hookrightarrow_{C} \cong_{T}.$$

イロン イロン イヨン イヨン

≣ ∽ ۹ 7WGBS 24 of 45

Miguel Moreno (UH)	7
The Borel reducibility Main Gap	24

History	GDST	The Gap	The order
		0000000000000	

Classifiable non-shallow

Lemma (M. 2023)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$. The following reduction is strict. Let $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. If T_1 is a classifiable non-shallow theory and T_2 is a non-classifiable theory, then

$$\cong_{T_2}^{\lambda} \hookrightarrow_C \cong_{T_1} \hookrightarrow_C \cong_{T_2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Classifiable shallow

Lemma (M. 2023)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$. The following reductions are strict. Let $\kappa = \aleph_{\gamma}$ be such that $\beth_{\omega_1}(|\gamma|) \le \kappa$. Suppose T_1 is a classifiable shallow theory, T_2 a classifiable non-shallow theory, and T_3 non-classifiable theory. Then

$$\cong_{T_1} \hookrightarrow_B \cong_{T_3}^{\lambda} \hookrightarrow_C \cong_{T_2}$$
.

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	●000000000000000000000000000000000000	0000

Detailed

Theorem (M. 2023) Let $\mathfrak{c} = 2^{\omega}$. Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$.

liguel Moreno (UH)	
he Borel reducibility Main Gap	

イロト イヨト イヨト イヨト

≣ ∽ি ৭.০ে 7WGBS 27 of 45

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	●00000000000000000	0000

Detailed

Theorem (M. 2023)

Let $\mathfrak{c} = 2^{\omega}$. Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then there is $\gamma < \kappa$ such that

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{C}} =_{\gamma}^2 \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}'} \text{ and } =_{\gamma}^2 \not\hookrightarrow_{\mathcal{B}} \cong_{\mathcal{T}}.$$

Miguel Moreno (UH)	7WGBS
The Borel reducibility Main Gap	27 of 45

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	○●○○○○○○○○○○○○	0000

Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017) Assume T is a classifiable theory and let $S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \}$. If \diamondsuit_S holds, then $\cong_T \hookrightarrow_C =_{\gamma}^2$.

Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017) Assume T is a classifiable theory and let $S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \}$. If \diamondsuit_S holds, then $\cong_T \hookrightarrow_C =_{\gamma}^2$.

Theorem (Friedman - Hyttinen - Kulikov 2014) If T is a classifiable theory and $\gamma < \kappa$ is regular, then $=^2_{\gamma} \not\hookrightarrow_B \cong_T$.

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	00●00000000000	0000

Blue print of the proof

Miguel Moreno (UH The Borel reducibili

Construct the reductions.

н)		7WGBS
lity Main Gap		29 of 45

イロト イボト イヨト イヨト

э

Blue print of the proof

Construct the reductions.

Construct Ehrenfeucht-Mostowski models, such that

$$f =_{\gamma}^{2} g \text{ iff } \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Miguel Moreno (UH) The Borel reducibility Main Gap 7WGBS 29 of 45

Blue print of the proof

Construct the reductions.

Construct Ehrenfeucht-Mostowski models, such that

$$f =_{\gamma}^{2} g \text{ iff } \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Construct ordered trees, such that

$$f =_{\gamma}^{2} g \Leftrightarrow A_{f} \cong A_{g}.$$

History 00000	GDST 0000000	The Gap 000000000000	Proof 000●00000000000	The order 0000
κ^+ , (γ	+ 2)-tree*			

Let $\gamma < \kappa$ be a regular cardinal. A κ^+ , $(\gamma + 2)$ -tree^{*} t is a tree with the following properties:

t has a unique root.

Mig The

uel Moreno (UH)		7WGBS
e Borel reducibility Main Gap		30 of 45

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Let $\gamma < \kappa$ be a regular cardinal. A κ^+ , $(\gamma + 2)$ -tree^{*} t is a tree with the following properties:

t has a unique root.

Every element of t has less than κ^+ immediate successors.

	_	 _	
/liguel Moreno (UH)			7WGBS
he Borel reducibility Main Gap			30 of 45

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Let $\gamma < \kappa$ be a regular cardinal. A κ^+ , $(\gamma + 2)$ -tree^{*} t is a tree with the following properties:

t has a unique root.

• Every element of t has less than κ^+ immediate successors.

All the branches of t have order type γ or $\gamma + 1$.

Let $\gamma < \kappa$ be a regular cardinal. A κ^+ , $(\gamma + 2)$ -tree^{*} t is a tree with the following properties:

t has a unique root.

• Every element of t has less than κ^+ immediate successors.

All the branches of t have order type γ or $\gamma + 1$.

• Every chain of length less than γ has a unique limit.

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	0000●0000000000	0000

Isomorphism of κ^+ , $(\gamma + 2)$ -tree*

Lemma (Hyttinen - Kulikov - M.)

Suppose $\gamma < \kappa$ is such that for all $\epsilon < \kappa$, $\epsilon^{\gamma} < \kappa$. For every $f, g \in 2^{\kappa}$ there are κ^+ , $(\gamma + 2)$ -trees^{*} J_f and J_g such that

$$f =^2_{\gamma} g \Leftrightarrow J_f \cong_{ct} J_g$$

where \cong_{ct} is the isomorphism of κ^+ , $(\gamma + 2)$ -tree^{*}.

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	00000●000000000	0000

Ordered trees

Definition

Let $\gamma < \kappa$ be a regular cardinal and I a linear order. $(A, \prec, <)$ is an ordered tree if the following holds:

•
$$(A, \prec)$$
 is a κ^+ , $(\gamma + 2)$ -tree^{*}.

2

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	00000●000000000	0000

Ordered trees

Definition

Let $\gamma < \kappa$ be a regular cardinal and I a linear order. $(A, \prec, <)$ is an ordered tree if the following holds:

- ▶ (A, \prec) is a κ^+ , $(\gamma + 2)$ -tree^{*}.
- for all $x \in A$, (succ(x), <) is isomorphic to *I*.

History	GDST	The Gap	Proof	The order
00000	0000000	00000000000000	000000●00000000	0000

κ -colorable

Definition

Let I be a linear order of size κ . We say that I is κ -colorable if there is a function $F : I \to \kappa$ such that for all $B \subseteq I$, $|B| < \kappa$, $b \in I \setminus B$, and $p = tp_{bs}(b, B, I)$ such that the following hold: For all $\alpha \in \kappa$,

$$|\{a \in I \mid a \models p \& F(a) = \alpha\}| = \kappa.$$

Isomorphism of ordered trees

Theorem (M. 2023)

Suppose $\gamma < \kappa$ is such that for all $\epsilon < \kappa$, $\epsilon^{\gamma} < \kappa$, and there is a κ -colorable linear order I.

Isomorphism of ordered trees

Theorem (M. 2023)

Suppose $\gamma < \kappa$ is such that for all $\epsilon < \kappa$, $\epsilon^{\gamma} < \kappa$, and there is a κ -colorable linear order I. For all $f \in 2^{\kappa}$ there is an ordered tree A_f such that for all $f, g \in 2^{\kappa}$,

$$f =_{\gamma}^{2} g \Leftrightarrow A_{f} \cong A_{g}.$$

(日) (四) (三) (三)

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	0000000●000000	0000

Example of DOP.

	・ロ・・(型・・目・・目)	ヨー つく
Miguel Moreno (UH)		7WGBS
The Borel reducibility Main Gap		35 of 45

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	0000000●000000	0000

Example of DOP.

Suppose T is superstable with DOP in a countable relational vocabulary τ . Let τ^1 be a Skolemization of τ , and T^1 be a complete theory in τ^1 extending T and with Skolem-functions in τ . Then for every $f \in 2^{\kappa}$ we want a model $\mathcal{M}_1^f \models T^1$ with the following properties.

・ 同 ト ・ ヨ ト ・ ヨ ト

History	GDST	The Gap	Proof	The order
00000	0000000	00000000000000	oooooooooooooooo	0000
T 1				

1. There is a map $\mathcal{H} : A_f \to (\operatorname{dom} \mathcal{M}_1^f)^n$ for some $n < \omega$, $\eta \mapsto a_\eta$, such that \mathcal{M}_1^f is the Skolem hull of $\{a_\eta \mid \eta \in A_f\}$. Let us denote $\{a_\eta \mid \eta \in A_f\}$ by $Sk(\mathcal{M}_1^f)$.

History 00000	GDST 0000000	The Gap 000000000000	Proof 00000000000000000000000000000000000	The order 0000

- 1. There is a map $\mathcal{H} : A_f \to (\operatorname{dom} \mathcal{M}_1^f)^n$ for some $n < \omega$, $\eta \mapsto a_\eta$, such that \mathcal{M}_1^f is the Skolem hull of $\{a_\eta \mid \eta \in A_f\}$. Let us denote $\{a_\eta \mid \eta \in A_f\}$ by $Sk(\mathcal{M}_1^f)$.
- 2. $\mathcal{M}^f = \mathcal{M}^f_1 \upharpoonright \tau$ is a model of T.

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	00000000●00000	0000

1. There is a map $\mathcal{H} : A_f \to (\operatorname{dom} \mathcal{M}_1^f)^n$ for some $n < \omega$, $\eta \mapsto a_\eta$, such that \mathcal{M}_1^f is the Skolem hull of $\{a_\eta \mid \eta \in A_f\}$. Let us denote $\{a_\eta \mid \eta \in A_f\}$ by $Sk(\mathcal{M}_1^f)$.

2.
$$\mathcal{M}^f = \mathcal{M}^f_1 \upharpoonright \tau$$
 is a model of T .

3. $Sk(\mathcal{M}_{1}^{f})$ is indiscernible in \mathcal{M}_{1}^{f} relative to $L_{\omega_{1}\omega_{1}}$, i.e. if $tp_{at}(\bar{s}, \emptyset, A_{f}) = tp_{at}(\bar{s'}, \emptyset, A_{f})$, then $tp_{\Delta}(\bar{a}_{\bar{s}}, \emptyset, \mathcal{M}_{1}^{f}) = tp_{\Delta}(\bar{a}_{\bar{s'}}, \emptyset, \mathcal{M}_{1}^{f})$, where $\Delta = L_{\omega_{1}\omega_{1}}$.

< ロ > < 同 > < 三 > < 三 >

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	00000000●00000	0000

1. There is a map $\mathcal{H} : A_f \to (\operatorname{dom} \mathcal{M}_1^f)^n$ for some $n < \omega$, $\eta \mapsto a_\eta$, such that \mathcal{M}_1^f is the Skolem hull of $\{a_\eta \mid \eta \in A_f\}$. Let us denote $\{a_\eta \mid \eta \in A_f\}$ by $Sk(\mathcal{M}_1^f)$.

2.
$$\mathcal{M}^f = \mathcal{M}^f_1 \upharpoonright \tau$$
 is a model of \mathcal{T} .

- 3. $Sk(\mathcal{M}_{1}^{f})$ is indiscernible in \mathcal{M}_{1}^{f} relative to $L_{\omega_{1}\omega_{1}}$, i.e. if $tp_{at}(\bar{s}, \emptyset, A_{f}) = tp_{at}(\bar{s'}, \emptyset, A_{f})$, then $tp_{\Delta}(\bar{a}_{\bar{s}}, \emptyset, \mathcal{M}_{1}^{f}) = tp_{\Delta}(\bar{a}_{\bar{s'}}, \emptyset, \mathcal{M}_{1}^{f})$, where $\Delta = L_{\omega_{1}\omega_{1}}$.
- 4. There is a formula $\varphi \in L_{\omega_1\omega_1}(\tau)$ such that for all $\eta, \nu \in A_f$ and $m < \gamma$, if $A_f \models P_m(\eta) \land P_{\gamma}(\nu)$, then $\mathcal{M}^f \models \varphi(a_{\nu}, a_{\eta})$ if and only if $A_f \models \eta \prec \nu$.

< ロ > < 同 > < 三 > < 三 >

History	GDST	The Gap	Proof	The order
00000	0000000	00000000000000	ooooooooooooooooooooo	0000
Coding	trees			

For every $f \in 2^{\kappa}$ let us define the order $K^{D}(f)$ by: I. dom $K^{D}(f) = (dom A_{f} \times \{0\}) \cup (dom A_{f} \times \{1\}).$

uel Moreno (UH)		7WGBS
Borel reducibility Main Gap		37 of 45

Migu

The

イロト 不得 トイヨト イヨト

э

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	oooooooooooooooooooo	0000
Coding	troop			

Coding trees

For every $f \in 2^{\kappa}$ let us define the order $K^D(f)$ by:

I. dom $K^{D}(f) = (dom A_{f} \times \{0\}) \cup (dom A_{f} \times \{1\}).$

II. For all $\eta \in A_f$, $(\eta, 0) <_{\mathcal{K}^D(f)} (\eta, 1)$.

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	000000000●0000	0000
Cadina				

Coding trees

For every $f\in 2^\kappa$ let us define the order $K^D(f)$ by:

I. dom $K^{D}(f) = (dom A_{f} \times \{0\}) \cup (dom A_{f} \times \{1\}).$

II. For all
$$\eta \in A_f$$
, $(\eta, 0) <_{\mathcal{K}^D(f)} (\eta, 1)$.

III. If
$$\eta, \xi \in A_f$$
, then $\eta \prec \xi$ if and only if

 $(\eta, 0) <_{\mathcal{K}^{D}(f)} (\xi, 0) <_{\mathcal{K}^{D}(f)} (\xi, 1) <_{\mathcal{K}^{D}(f)} (\eta, 1).$

History GDST The Gap Proof The order

Coding trees

For every $f \in 2^{\kappa}$ let us define the order $K^{D}(f)$ by:

1. dom $K^D(f) = (dom A_f \times \{0\}) \cup (dom A_f \times \{1\}).$

II. For all
$$\eta \in A_f$$
, $(\eta, 0) <_{\mathcal{K}^D(f)} (\eta, 1)$.

III. If
$$\eta, \xi \in A_f$$
, then $\eta \prec \xi$ if and only if

$$(\eta, 0) <_{\mathcal{K}^{D}(f)} (\xi, 0) <_{\mathcal{K}^{D}(f)} (\xi, 1) <_{\mathcal{K}^{D}(f)} (\eta, 1).$$

IV. If $\eta, \xi \in A_f$, then $\eta < \xi$ if and only if $(\eta, 1) <_{K^D(f)} (\xi, 0)$.

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	00000000000000000000000000000000000	0000

$\varepsilon\text{-dense}$

Definition

Let I be a linear order of size κ and ε a regular cardinal smaller than κ . We say that I is ε -dense if the following holds.

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	00000000000000000000000000000000000	0000

ε -dense

Definition

Let I be a linear order of size κ and ε a regular cardinal smaller than κ . We say that I is ε -dense if the following holds.

If $A, B \subseteq I$ are subsets of size less than ε such that for all $a \in A$ and $b \in B$, a < b, then there is $c \in I$, such that for all $a \in A$ and $b \in B$, a < c < b.

 Miguel Moreno (UH)
 7WGBS

 The Borel reducibility Main Gap
 38 of 45

A (1) > A (2) > A

The isomorphism theorem

Theorem (M. 2023)

Suppose T is a non-classifiable first order theory in a countable relational vocabulary τ . If I is (κ, ε) -nice and $(< \kappa)$ -stable, then for all $f, g \in 2^{\kappa}$

$$f =_{\gamma}^{2} g \text{ iff } \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Construct an ε-dense, (κ, ε)-nice, (< κ)-stable, and κ-colorable linear order.

イロト イ団ト イヨト イヨト

3

- Construct an ε-dense, (κ, ε)-nice, (< κ)-stable, and κ-colorable linear order.
- Construct ordered trees from the linear order.

- Construct an ε-dense, (κ, ε)-nice, (< κ)-stable, and κ-colorable linear order.
- Construct ordered trees from the linear order.
- Construct skeletons from ordered trees, to construct Ehrenfeucht-Mostowski models.

- Construct an ε-dense, (κ, ε)-nice, (< κ)-stable, and κ-colorable linear order.
- Construct ordered trees from the linear order.
- Construct skeletons from ordered trees, to construct Ehrenfeucht-Mostowski models.
- Prove the isomorphism theorem.

- Construct an ε-dense, (κ, ε)-nice, (< κ)-stable, and κ-colorable linear order.
- Construct ordered trees from the linear order.
- Construct skeletons from ordered trees, to construct Ehrenfeucht-Mostowski models.
- Prove the isomorphism theorem.
- Construct the reductions.

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	0000000000000	0000

Existence

Let $\theta < \kappa$ be the smallest cardinal such that there is a ε -dense model of *DLO* of size θ .

イロト イヨト イヨト イヨト

æ

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	00000000000000	0000

Existence

Let $\theta < \kappa$ be the smallest cardinal such that there is a ε -dense model of *DLO* of size θ .

Theorem (M. 2023)

Suppose κ is inaccessible, or $\kappa = \lambda^+$, $2^{\theta} \leq \lambda = \lambda^{<\varepsilon}$. There is a ε -dense, (κ, ε) -nice, $(< \kappa)$ -stable, and κ -colorable linear order.

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	000000000000000	●000

< 🗇 🕨 < 🖻 🕨 <

7WGBS 42 of 45

Construction

Let Q be a model of *DLO* of size $\theta < \kappa$, that is ε -dense.

Definition

Let $\kappa\times \mathcal{Q}$ be ordered by the lexicographic order,

Miguel Moreno (UH)	
The Borel reducibility Main Gap	

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	000000000000000000	●000

Let Q be a model of *DLO* of size $\theta < \kappa$, that is ε -dense.

Definition

Let $\kappa \times Q$ be ordered by the lexicographic order, \mathcal{I}^0 be the set of functions $f : \varepsilon \to \kappa \times Q$ such that $f(\alpha) = (f_1(\alpha), f_2(\alpha))$, for which $|\{\alpha \in \varepsilon \mid f_1(\alpha) \neq 0\}|$ is smaller than ε .

Let Q be a model of *DLO* of size $\theta < \kappa$, that is ε -dense.

Definition

Let $\kappa \times Q$ be ordered by the lexicographic order, \mathcal{I}^0 be the set of functions $f : \varepsilon \to \kappa \times Q$ such that $f(\alpha) = (f_1(\alpha), f_2(\alpha))$, for which $|\{\alpha \in \varepsilon \mid f_1(\alpha) \neq 0\}|$ is smaller than ε . If $f, g \in \mathcal{I}^0$, then f < g if and only if $f(\alpha) < g(\alpha)$, where α is the least number such that $f(\alpha) \neq g(\alpha)$.

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	000000000000000	○●○○

Let us fix $\tau \in Q$. Let *I* be the set of functions $f : \varepsilon \to (\{0\} \times \mathcal{I}^0) \cup (\kappa \times Q)$ such that the following hold:

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	000000000000000	○●○○

Let us fix $\tau \in Q$. Let *I* be the set of functions $f : \varepsilon \to (\{0\} \times \mathcal{I}^0) \cup (\kappa \times Q)$ such that the following hold: $\blacktriangleright f \upharpoonright \{0\} : \{0\} \to \{0\} \times \mathcal{I}^0.$

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	000000000000000	○●○○

Let us fix $\tau \in Q$. Let *I* be the set of functions $f : \varepsilon \to (\{0\} \times I^0) \cup (\kappa \times Q)$ such that the following hold: • $f \upharpoonright \{0\} : \{0\} \to \{0\} \times I^0$. • $f \upharpoonright \varepsilon \setminus \{0\} : \varepsilon \setminus \{0\} \to \kappa \times Q$.

< ロ > < 同 > < 三 > < 三 >

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	000000000000000	○●○○

Let us fix $\tau \in Q$. Let *I* be the set of functions $f: \varepsilon \to (\{0\} \times \mathcal{I}^0) \cup (\kappa \times Q)$ such that the following hold:

 $\blacktriangleright f \upharpoonright \{0\} : \{0\} \to \{0\} \times \mathcal{I}^0.$

•
$$f \upharpoonright \varepsilon \setminus \{0\} : \varepsilon \setminus \{0\} \to \kappa \times \mathcal{Q}.$$

There is α < ε ordinal such that ∀β > α, f(β) = (0, τ). We say that the least α with such property is the *depth* of f and we denote it by *dp*(f);

< ロ > < 同 > < 三 > < 三 >

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	000000000000000	○●○○

Let us fix $\tau \in Q$. Let I be the set of functions $f: \varepsilon \to (\{0\} \times \mathcal{I}^0) \cup (\kappa \times Q)$ such that the following hold:

 $\blacktriangleright f \upharpoonright \{0\} : \{0\} \to \{0\} \times \mathcal{I}^0.$

•
$$f \upharpoonright \varepsilon \setminus \{0\} : \varepsilon \setminus \{0\} \to \kappa \times \mathcal{Q}.$$

- There is α < ε ordinal such that ∀β > α, f(β) = (0, τ). We say that the least α with such property is the *depth* of f and we denote it by *dp*(f);
- ▶ There are functions $f_1 : \varepsilon \to \kappa$ and $f_2 : \varepsilon \to \mathcal{I}^0 \cup \mathcal{Q}$ such that $f(\beta) = (f_1(\beta), f_2(\beta))$ and $f_1 \upharpoonright dp(f) + 1$ is strictly increasing.

э.

イロト 不得 トイヨト イヨト

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	0000000000000000	○○●○

We say that f < g if and only if one of the following holds:

Miguel Moreno (UH)	7WGBS
The Borel reducibility Main Gap	44 of 45

History	GDST	The Gap	Proof	The order
00000	0000000	000000000000	000000000000000	00●0

We say that f < g if and only if one of the following holds: • $f(0) \neq g(0)$ and $f_2(0) < g_2(0)$;

History	GDST	The Gap	Proof	The order
00000	0000000	0000000000000	000000000000000	00●0

We say that f < g if and only if one of the following holds: • $f(0) \neq g(0)$ and $f_2(0) < g_2(0)$; • let $\alpha = dp(g)$, $\forall \beta \le \alpha$, $f(\beta) = g(\beta)$ and $f_1(\alpha + 1) \neq 0$;

3

History	GDST	The Gap	The order
			0000

We say that f < g if and only if one of the following holds:

3

History	GDST	The Gap	The order
			0000

Thank you

Article at: https://arxiv.org/abs/2308.07510

Niguel Moreno (UH)	7WGBS
The Borel reducibility Main Gap	45 of 4

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

15