LST numbers for regularity quantifiers

Christopher Henney-Turner

GBSW7, February 2024

LST Numbers

Definition

Let Q_{1}, \ldots, Q_{n} be (Lindström) quantifiers. The Löwenheim-Skolem-Tarski number $\operatorname{LST}\left(Q_{1}, \ldots, Q_{n}\right)$ is the least κ such that for all first order \mathcal{L} with $|\mathcal{L}|<\kappa$, every \mathcal{L} structure \mathcal{A} contains an $\mathcal{L} \cup\left\{Q_{1}, \ldots, Q_{n}\right\}$ elementary substructure $\mathcal{B} \prec \mathcal{A}$ with $|\mathcal{B}|<\kappa$.
If no such κ exists we say $\operatorname{LST}\left(Q_{1}, \ldots, Q_{n}\right)=\infty$.

LST Numbers

Definition

Let Q_{1}, \ldots, Q_{n} be (Lindström) quantifiers. The Löwenheim-Skolem-Tarski number $\operatorname{LST}\left(Q_{1}, \ldots, Q_{n}\right)$ is the least κ such that for all first order \mathcal{L} with $|\mathcal{L}|<\kappa$, every \mathcal{L} structure \mathcal{A} contains an $\mathcal{L} \cup\left\{Q_{1}, \ldots, Q_{n}\right\}$ elementary substructure $\mathcal{B} \prec \mathcal{A}$ with $|\mathcal{B}|<\kappa$.
If no such κ exists we say $\operatorname{LST}\left(Q_{1}, \ldots, Q_{n}\right)=\infty$.

Example

$\operatorname{LST}()=\aleph_{1}$

Two standard quantifiers

Definition (The Härtig Quantifier)

$I(\varphi(x), \psi(y))$ is true in \mathcal{A} if

$$
|\{x: \mathcal{A} \vDash \varphi(x)\}|^{V}=|\{y: \mathcal{A} \vDash \psi(y)\}|^{V}
$$

Two standard quantifiers

Definition (The Härtig Quantifier)

$I(\varphi(x), \psi(y))$ is true in \mathcal{A} if

$$
|\{x: \mathcal{A} \vDash \varphi(x)\}|^{V}=|\{y: \mathcal{A} \vDash \psi(y)\}|^{V}
$$

Definition (The Equal Cofinality Quantifier)
$Q^{\text {e.c. }}\left(\varphi\left(x_{1}, x_{2}\right), \psi\left(y_{1}, y_{2}\right)\right)$ is true in \mathcal{A} if the two sets

$$
\left\{\left(x_{1}, x_{2}\right): \mathcal{A} \vDash \varphi\left(x_{1}, x_{2}\right)\right\}
$$

and

$$
\left\{\left(y_{1}, y_{2}\right): \mathcal{A} \vDash \psi\left(y_{1}, y_{2}\right)\right\}
$$

are both linear orders and have the same V cofinality.

Two standard quantifiers

Definition (The Härtig Quantifier)
$I(\varphi(x), \psi(y))$ is true in \mathcal{A} if

$$
|\{x: \mathcal{A} \vDash \varphi(x)\}|^{V}=|\{y: \mathcal{A} \vDash \psi(y)\}|^{V}
$$

Definition (The Equal Cofinality Quantifier)
$Q^{\text {e.c. }}\left(\varphi\left(x_{1}, x_{2}\right), \psi\left(y_{1}, y_{2}\right)\right)$ is true in \mathcal{A} if the two sets

$$
\left\{\left(x_{1}, x_{2}\right): \mathcal{A} \vDash \varphi\left(x_{1}, x_{2}\right)\right\}
$$

and

$$
\left\{\left(y_{1}, y_{2}\right): \mathcal{A} \vDash \psi\left(y_{1}, y_{2}\right)\right\}
$$

are both linear orders and have the same V cofinality.
Assume GCH.

Intermediate Quantifiers

Definition
 Reg is the class of all regular cardinals.

Intermediate Quantifiers

Definition

Reg is the class of all regular cardinals. Reg_{0} is the class of successor cardinals.

Intermediate Quantifiers

Definition

Reg is the class of all regular cardinals.
Reg_{0} is the class of successor cardinals. Reg_{1} is the class of simple inaccessibles.

Intermediate Quantifiers

Definition

Reg is the class of all regular cardinals.
Reg_{0} is the class of successor cardinals. Reg_{1} is the class of simple inaccessibles. Reg_{2} is the class of inaccessible simple limits of inaccessibles.

Intermediate Quantifiers

Definition

Reg is the class of all regular cardinals.
Reg_{0} is the class of successor cardinals. Reg_{1} is the class of simple inaccessibles. Reg_{2} is the class of inaccessible simple limits of inaccessibles. In general, $\operatorname{Reg}_{\alpha}$ is the class of successors of $\operatorname{Reg} \backslash \operatorname{Reg}_{<\alpha}$.

Intermediate Quantifiers

Definition

Reg is the class of all regular cardinals.
Reg_{0} is the class of successor cardinals. Reg_{1} is the class of simple inaccessibles. Reg_{2} is the class of inaccessible simple limits of inaccessibles. In general, $\operatorname{Reg}_{\alpha}$ is the class of successors of $\operatorname{Reg} \backslash \operatorname{Reg}_{<\alpha}$.

Definition
 $Q^{\alpha}\left(\varphi\left(x_{1}, x_{2}\right), \psi\left(y_{1}, y_{2}\right), \chi\left(z_{1}, z_{2}\right)\right)$ is true in \mathcal{A} if the sets X and Y and Z defined over \mathcal{A} by φ, ψ and χ satisfy:

- X and Y are linear orders with the same V cofinality;

Intermediate Quantifiers

Definition

Reg is the class of all regular cardinals.
Reg_{0} is the class of successor cardinals. Reg_{1} is the class of simple inaccessibles. Reg_{2} is the class of inaccessible simple limits of inaccessibles. In general, $\operatorname{Reg}_{\alpha}$ is the class of successors of $\operatorname{Reg} \backslash \operatorname{Reg}_{<\alpha}$.

Definition

$Q^{\alpha}\left(\varphi\left(x_{1}, x_{2}\right), \psi\left(y_{1}, y_{2}\right), \chi\left(z_{1}, z_{2}\right)\right)$ is true in \mathcal{A} if the sets X and Y and Z defined over \mathcal{A} by φ, ψ and χ satisfy:

- X and Y are linear orders with the same V cofinality;
- Z is a well order of order type less than α; and
- The equal cofinality of X and Y is in $\operatorname{Reg}_{\text {o.t.(}}(Z)$

Intermediate Quantifiers

Theorem (H.T.)
 $\operatorname{LST}\left(I, Q^{\infty}\right)=\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$.

Intermediate Quantifiers

Theorem (H.T.)
$\operatorname{LST}\left(I, Q^{\infty}\right)=\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$.

Theorem (H.T.)
If $\beta \leq \alpha$ then $\operatorname{LST}\left(I, Q^{\beta}\right) \leq \operatorname{LST}\left(I, Q^{\alpha}\right)$ unless $\beta>\operatorname{LST}\left(I, Q^{\alpha}\right)$.

An Upper Bound

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?

An Upper Bound

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Folklore?)
Let κ be supercompact. Then LST $\left(I, Q^{\text {e.c. }}\right) \leq \kappa$.

An Upper Bound

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Folklore?)
Let κ be supercompact. Then $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right) \leq \kappa$.

Proof.

Let \mathcal{A} be an \mathcal{L} structure $(|\mathcal{L}|<\kappa)$ with domain $\nu \in$ On.

An Upper Bound

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Folklore?)
Let κ be supercompact. Then LST $\left(I, Q^{\text {e.c. }}\right) \leq \kappa$.

Proof.

Let \mathcal{A} be an \mathcal{L} structure $(|\mathcal{L}|<\kappa)$ with domain $\nu \in$ On.
Let $j: V \rightarrow M$ with $j(\kappa)>\nu$ and $M^{\nu} \subset M$.

An Upper Bound

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Folklore?)
Let κ be supercompact. Then LST $\left(I, Q^{\text {e.c. }}\right) \leq \kappa$.

Proof.

Let \mathcal{A} be an \mathcal{L} structure $(|\mathcal{L}|<\kappa)$ with domain $\nu \in$ On.
Let $j: V \rightarrow M$ with $j(\kappa)>\nu$ and $M^{\nu} \subset M$.
Let $\mathcal{B} \in M$ be the pointwise image of \mathcal{A}.

An Upper Bound

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Folklore?)
Let κ be supercompact. Then LST $\left(I, Q^{\text {e.c. }}\right) \leq \kappa$.

Proof.

Let \mathcal{A} be an \mathcal{L} structure $(|\mathcal{L}|<\kappa)$ with domain $\nu \in$ On.
Let $j: V \rightarrow M$ with $j(\kappa)>\nu$ and $M^{\nu} \subset M$.
Let $\mathcal{B} \in M$ be the pointwise image of \mathcal{A}.
$j(\mathcal{A})^{M} \equiv \mathcal{A}^{V} \equiv \mathcal{B}^{M}$ in $\mathcal{L} \cup\left\{I, Q^{\text {e.c. }}\right\}$

An Upper Bound

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Folklore?)
Let κ be supercompact. Then LST $\left(I, Q^{\text {e.c. }}\right) \leq \kappa$.

Proof.

Let \mathcal{A} be an \mathcal{L} structure $(|\mathcal{L}|<\kappa)$ with domain $\nu \in$ On.
Let $j: V \rightarrow M$ with $j(\kappa)>\nu$ and $M^{\nu} \subset M$.
Let $\mathcal{B} \in M$ be the pointwise image of \mathcal{A}.
$j(\mathcal{A})^{M} \equiv \mathcal{A}^{V} \equiv \mathcal{B}^{M}$ in $\mathcal{L} \cup\left\{I, Q^{\text {e.c. }}\right\}$
$M \vDash$ " $j(\mathcal{A})$ has an $\mathcal{L} \cup\left\{I, Q^{\text {e.c. }}\right\}$ elementary substructure of size $<j(\kappa)^{\prime \prime}$

An Upper Bound

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Folklore?)
Let κ be supercompact. Then $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right) \leq \kappa$.

Proof.

Let \mathcal{A} be an \mathcal{L} structure $(|\mathcal{L}|<\kappa)$ with domain $\nu \in$ On.
Let $j: V \rightarrow M$ with $j(\kappa)>\nu$ and $M^{\nu} \subset M$.
Let $\mathcal{B} \in M$ be the pointwise image of \mathcal{A}.
$j(\mathcal{A})^{M} \equiv \mathcal{A}^{V} \equiv \mathcal{B}^{M}$ in $\mathcal{L} \cup\left\{I, Q^{\text {e.c. }}\right\}$
$M \vDash$ " $j(\mathcal{A})$ has an $\mathcal{L} \cup\left\{I, Q^{\text {e.c. }}\right\}$ elementary substructure of size $<j(\kappa)^{\prime \prime}$
$V \vDash$ " \mathcal{A} has an $\mathcal{L} \cup\left\{I, Q^{\text {e.c. }}\right\}$ elementary substructure of size $<\kappa^{\prime \prime}$

Lower Bounds

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?

Lower Bounds

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Magidor, Väänänen, 2011)
$\mathrm{LST}(I)$ is at least the first inaccessible. If supercompacts are consistent, then this is optimal: there exists a universe where LST(I) is precisely the first inaccessible.

Lower Bounds

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Magidor, Väänänen, 2011)
$\mathrm{LST}(I)$ is at least the first inaccessible. If supercompacts are consistent, then this is optimal: there exists a universe where LST(I) is precisely the first inaccessible.
LST(I, Qe.c.) is at least the first Mahlo cardinal. If supercompacts are consistent, then this is optimal.

Lower Bounds

Question: What values can $\operatorname{LST}(I), \operatorname{LST}\left(I, Q^{\alpha}\right)$ and $\operatorname{LST}\left(I, Q^{\text {e.c. }}\right)$ take?
Theorem (Magidor, Väänänen, 2011)
$\mathrm{LST}(I)$ is at least the first inaccessible. If supercompacts are consistent, then this is optimal: there exists a universe where LST(I) is precisely the first inaccessible.
LST(I, Qe.c.) is at least the first Mahlo cardinal. If supercompacts are consistent, then this is optimal.

Theorem (H.T.)

Suppose that there are no Mahlo cardinals below α. Then $\operatorname{LST}\left(I, Q^{\alpha}\right) \geq \min \left(\operatorname{Reg}_{\alpha}\right)$, and assuming supercompacts this is optimal.

A hypothesis

It seems that the lower bound of a quantifier is the smallest large cardinal which can't be identified by that quantifier.

A hypothesis

It seems that the lower bound of a quantifier is the smallest large cardinal which can't be identified by that quantifier.

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)
If it exists, LST(I) is either an inaccessible or a limit of inaccessibles.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)
If it exists, LST(I) is either an inaccessible or a limit of inaccessibles. More generally, if α is below the least hyperinaccessible then if it exists, $\mathrm{LST}\left(I, Q^{\alpha}\right)$ is either an element of Reg_{α} or a limit of Reg_{α}.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)
If it exists, LST(I) is either an inaccessible or a limit of inaccessibles. More generally, if α is below the least hyperinaccessible then if it exists, $\mathrm{LST}\left(I, Q^{\alpha}\right)$ is either an element of Reg_{α} or a limit of $\operatorname{Reg}_{\alpha}$.

Proof (Sketch, I).

Say $\kappa=\operatorname{LST}(I)$ isn't a limit of inaccessibles. Let $\mu<\kappa$ be the supremum of the inaccessibles below κ.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)
If it exists, LST(I) is either an inaccessible or a limit of inaccessibles. More generally, if α is below the least hyperinaccessible then if it exists, $\mathrm{LST}\left(I, Q^{\alpha}\right)$ is either an element of Reg_{α} or a limit of $\operatorname{Reg}_{\alpha}$.

Proof (Sketch, I).

Say $\kappa=\operatorname{LST}(I)$ isn't a limit of inaccessibles. Let $\mu<\kappa$ be the supremum of the inaccessibles below κ. Let $\mathcal{A}=\left(H_{\kappa^{+}}, \in, \gamma\right)_{\gamma \leq \mu}$.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)

If it exists, LST(I) is either an inaccessible or a limit of inaccessibles. More generally, if α is below the least hyperinaccessible then if it exists, $\mathrm{LST}\left(I, Q^{\alpha}\right)$ is either an element of Reg_{α} or a limit of $\operatorname{Reg}_{\alpha}$.

Proof (Sketch, I).

Say $\kappa=\operatorname{LST}(I)$ isn't a limit of inaccessibles. Let $\mu<\kappa$ be the supremum of the inaccessibles below κ. Let $\mathcal{A}=\left(H_{\kappa^{+}}, \in, \gamma\right)_{\gamma \leq \mu}$.
Find $\pi: \mathcal{B} \rightarrow \mathcal{A}$ which is I elementary, with \mathcal{B} transitive of size $<\kappa$.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)

If it exists, LST(I) is either an inaccessible or a limit of inaccessibles. More generally, if α is below the least hyperinaccessible then if it exists, $\operatorname{LST}\left(I, Q^{\alpha}\right)$ is either an element of $\operatorname{Reg}_{\alpha}$ or a limit of $\operatorname{Reg}_{\alpha}$.

Proof (Sketch, I).

Say $\kappa=\operatorname{LST}(I)$ isn't a limit of inaccessibles. Let $\mu<\kappa$ be the supremum of the inaccessibles below κ. Let $\mathcal{A}=\left(H_{\kappa^{+}}, \in, \gamma\right)_{\gamma \leq \mu}$.
Find $\pi: \mathcal{B} \rightarrow \mathcal{A}$ which is / elementary, with \mathcal{B} transitive of size $<\kappa$. $\beta:=\operatorname{cp}(\pi)>\mu$ is a limit cardinal of \mathcal{B}, because \mathcal{A} and \mathcal{B} calculate cardinals correctly.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)

If it exists, LST(I) is either an inaccessible or a limit of inaccessibles. More generally, if α is below the least hyperinaccessible then if it exists, $\operatorname{LST}\left(I, Q^{\alpha}\right)$ is either an element of $\operatorname{Reg}_{\alpha}$ or a limit of $\operatorname{Reg}_{\alpha}$.

Proof (Sketch, I).

Say $\kappa=\operatorname{LST}(I)$ isn't a limit of inaccessibles. Let $\mu<\kappa$ be the supremum of the inaccessibles below κ. Let $\mathcal{A}=\left(H_{\kappa^{+}}, \in, \gamma\right)_{\gamma \leq \mu}$.
Find $\pi: \mathcal{B} \rightarrow \mathcal{A}$ which is / elementary, with \mathcal{B} transitive of size $<\kappa$. $\beta:=\operatorname{cp}(\pi)>\mu$ is a limit cardinal of \mathcal{B}, because \mathcal{A} and \mathcal{B} calculate cardinals correctly. Moreover, β is inaccessible in \mathcal{B}.

Cardinals which can't be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)

If it exists, LST(I) is either an inaccessible or a limit of inaccessibles. More generally, if α is below the least hyperinaccessible then if it exists, $\operatorname{LST}\left(I, Q^{\alpha}\right)$ is either an element of $\operatorname{Reg}_{\alpha}$ or a limit of $\operatorname{Reg}_{\alpha}$.

Proof (Sketch, I).

Say $\kappa=\operatorname{LST}(I)$ isn't a limit of inaccessibles. Let $\mu<\kappa$ be the supremum of the inaccessibles below κ. Let $\mathcal{A}=\left(H_{\kappa^{+}}, \in, \gamma\right)_{\gamma \leq \mu}$.
Find $\pi: \mathcal{B} \rightarrow \mathcal{A}$ which is / elementary, with \mathcal{B} transitive of size $<\kappa$. $\beta:=\operatorname{cp}(\pi)>\mu$ is a limit cardinal of \mathcal{B}, because \mathcal{A} and \mathcal{B} calculate cardinals correctly. Moreover, β is inaccessible in \mathcal{B}.
So $\pi(\beta)>\mu$ is inaccessible in \mathcal{A}, and must be κ.

Cardinals which can be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Cardinals which can be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)

Suppose that GCH holds, κ is supercompact and the largest inaccessible, $\alpha \neq 0$ is below the first hyperinaccessible and $0 \neq \beta<\kappa$. There is a generic extension in which $\operatorname{LST}\left(I, Q^{\alpha}\right)$ is the β 'th element of $\operatorname{Reg}_{\alpha}$.

Cardinals which can be LST numbers

Hypothesis

The possible LST numbers of these quantifiers are precisely those cardinals that the quantifiers can't identify which are \leq the first supercompact.

Theorem (H.T., Osinski)

Suppose that GCH holds, κ is supercompact and the largest inaccessible, $\alpha \neq 0$ is below the first hyperinaccessible and $0 \neq \beta<\kappa$. There is a generic extension in which $\operatorname{LST}\left(I, Q^{\alpha}\right)$ is the β^{\prime} th element of $\operatorname{Reg}_{\alpha}$.

If $\alpha=1$ then we also get that $\operatorname{LST}(I)=\operatorname{LST}\left(I, Q^{1}\right)$.

Proving the theorem

Let κ be the supercompact. Let μ be the supremum of the first β many elements of $\operatorname{Reg}_{\alpha}$.
We want a forcing which:

Proving the theorem

Let κ be the supercompact. Let μ be the supremum of the first β many elements of $\operatorname{Reg}_{\alpha}$.
We want a forcing which:

- Preserves everything below μ;

Proving the theorem

Let κ be the supercompact. Let μ be the supremum of the first β many elements of $\operatorname{Reg}_{\alpha}$.
We want a forcing which:

- Preserves everything below μ;
- Forces $\operatorname{LST}\left(I, Q^{\alpha}\right)>\mu$;

Proving the theorem

Let κ be the supercompact. Let μ be the supremum of the first β many elements of $\operatorname{Reg}_{\alpha}$.
We want a forcing which:

- Preserves everything below μ;
- Forces $\operatorname{LST}\left(I, Q^{\alpha}\right)>\mu$;
- Collapses cardinals so κ becomes the next element of $\operatorname{Reg}_{\alpha}$ above μ; and

Proving the theorem

Let κ be the supercompact. Let μ be the supremum of the first β many elements of $\operatorname{Reg}_{\alpha}$.
We want a forcing which:

- Preserves everything below μ;
- Forces $\operatorname{LST}\left(I, Q^{\alpha}\right)>\mu$;
- Collapses cardinals so κ becomes the next element of $\operatorname{Reg}_{\alpha}$ above μ; and
- Forces LST $\left(I, Q^{\alpha}\right) \leq \kappa$.

Making $\operatorname{LST}\left(I, Q^{\alpha}\right)>\mu$

Making $\operatorname{LST}\left(I, Q^{\alpha}\right)>\mu$

Lemma (Magidor, Väänänen)

SCH holds above LST(I).

Making $\operatorname{LST}\left(I, Q^{\alpha}\right)>\mu$

Lemma (Magidor, Väänänen)

SCH holds above LST(I).
We force a failure of SCH at some $\lambda \in(\mu, \kappa)$.

Making $\operatorname{LST}\left(I, Q^{\alpha}\right)>\mu$

Lemma (Magidor, Väänänen)

SCH holds above LST(I).
We force a failure of SCH at some $\lambda \in(\mu, \kappa)$.
We can do this while preserving supercompactness of κ.

Collapsing Cardinals

Collapsing Cardinals

Let $f: \kappa \rightarrow \kappa$ be a Laver style-function such that $(\gamma, f(\gamma)]$ contains many elements of $\mathrm{Reg}_{<\alpha}$ but no elements of Reg_{α}.

Collapsing Cardinals

Let $f: \kappa \rightarrow \kappa$ be a Laver style-function such that ($\gamma, f(\gamma)$] contains many elements of $\mathrm{Reg}_{<\alpha}$ but no elements of Reg_{α}.
Let NM_{κ} be the forcing which adds a club below κ whose:

- First element is μ

Collapsing Cardinals

Let $f: \kappa \rightarrow \kappa$ be a Laver style-function such that $(\gamma, f(\gamma)]$ contains many elements of $\mathrm{Reg}_{<\alpha}$ but no elements of Reg_{α}.
Let NM_{κ} be the forcing which adds a club below κ whose:

- First element is μ
- ω th element is λ

Collapsing Cardinals

Let $f: \kappa \rightarrow \kappa$ be a Laver style-function such that $(\gamma, f(\gamma)]$ contains many elements of $\mathrm{Reg}_{<\alpha}$ but no elements of Reg_{α}.
Let NM_{κ} be the forcing which adds a club below κ whose:

- First element is μ
- ω th element is λ
- Successors are in $\operatorname{Reg}_{\alpha}$

Collapsing Cardinals

Let $f: \kappa \rightarrow \kappa$ be a Laver style-function such that $(\gamma, f(\gamma)]$ contains many elements of $\mathrm{Reg}_{<\alpha}$ but no elements of Reg_{α}.
Let NM_{κ} be the forcing which adds a club below κ whose:

- First element is μ
- ω th element is λ
- Successors are in Reg_{α}
- Limits are singular

Collapsing Cardinals

Let $f: \kappa \rightarrow \kappa$ be a Laver style-function such that ($\gamma, f(\gamma)$] contains many elements of $\mathrm{Reg}_{<\alpha}$ but no elements of Reg_{α}.
Let NM_{κ} be the forcing which adds a club below κ whose:

- First element is μ
- ω th element is λ
- Successors are in Reg_{α}
- Limits are singular

If C is this club, define

$$
\operatorname{Col}_{\kappa}=\prod_{\gamma \in C} \operatorname{Col}\left(f(\gamma),<\operatorname{Succ}^{C}(\gamma)\right)
$$

Collapsing Cardinals

Let $f: \kappa \rightarrow \kappa$ be a Laver style-function such that ($\gamma, f(\gamma)$] contains many elements of $\mathrm{Reg}_{<\alpha}$ but no elements of $\operatorname{Reg}_{\alpha}$.
Let NM_{κ} be the forcing which adds a club below κ whose:

- First element is μ
- ω th element is λ
- Successors are in Reg_{α}
- Limits are singular

If C is this club, define

$$
\operatorname{Col}_{\kappa}=\prod_{\gamma \in C} \operatorname{Col}\left(f(\gamma),<\operatorname{Succ}^{C}(\gamma)\right)
$$

$\mathrm{NM}_{\kappa} \star \mathrm{Col}_{\kappa}$ preserves the failure of SCH at λ and makes κ the β 'th element of $\operatorname{Reg}_{\alpha}$.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

To do this we need $H \subset j(\mathbb{P})$ and $j^{*}: V[G] \rightarrow M[H]$ extending j.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

To do this we need $H \subset j(\mathbb{P})$ and $j^{*}: V[G] \rightarrow M[H]$ extending j. j^{*} exists for a given H iff $j^{\prime \prime} G \subset H$.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

To do this we need $H \subset j(\mathbb{P})$ and $j^{*}: V[G] \rightarrow M[H]$ extending j. j^{*} exists for a given H iff $j^{\prime \prime} G \subset H$.
We want to construct a forcing \mathbb{P} which includes $\mathrm{NM}_{\kappa} \star \mathrm{Col}_{\kappa}$ such that if G is \mathbb{P} generic, then for all j elementary, $j^{\prime \prime} G$ is contained in a $j(\mathbb{P})$ generic filter.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

We can't just use $\mathbb{P}=\mathrm{NM}_{\kappa} \star \operatorname{Col}_{\kappa}$. If we did then $j(\mathbb{P})=\mathrm{NM}_{j(\kappa)} \star \operatorname{Col}_{j(\kappa)}$ and:

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

We can't just use $\mathbb{P}=\mathrm{NM}_{\kappa} \star \operatorname{Col}_{\kappa}$. If we did then $j(\mathbb{P})=\mathrm{NM}_{j(\kappa)} \star \operatorname{Col}_{j(\kappa)}$ and:

- If C is the NM_{κ} club, $j^{\prime \prime} C=C$ needs to be a condition in $\mathrm{NM}_{j(\kappa)}$, but $C \notin M$;

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

We can't just use $\mathbb{P}=\mathrm{NM}_{\kappa} \star \operatorname{Col}_{\kappa}$. If we did then $j(\mathbb{P})=\mathrm{NM}_{j(\kappa)} \star \operatorname{Col}_{j(\kappa)}$ and:

- If C is the NM_{κ} club, $j^{\prime \prime} C=C$ needs to be a condition in $\mathrm{NM}_{j(\kappa)}$, but $C \notin M$;
- Even if C were added to M, κ is regular so $C \notin \mathrm{NM}_{j(\kappa)}$;

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

We can't just use $\mathbb{P}=\mathrm{NM}_{\kappa} \star \operatorname{Col}_{\kappa}$. If we did then $j(\mathbb{P})=\mathrm{NM}_{j(\kappa)} \star \operatorname{Col}_{j(\kappa)}$ and:

- If C is the NM_{κ} club, $j^{\prime \prime} C=C$ needs to be a condition in $\mathrm{NM}_{j(\kappa)}$, but $C \notin M$;
- Even if C were added to M, κ is regular so $C \notin \mathrm{NM}_{j(\kappa)}$;
- Even if κ were singularised, Col_{κ} would be changed by doing this.
$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

We can't just use $\mathbb{P}=\mathrm{NM}_{\kappa} \star \operatorname{Col}_{\kappa}$. If we did then $j(\mathbb{P})=\mathrm{NM}_{j(\kappa)} \star \operatorname{Col}_{j(\kappa)}$ and:

- If C is the NM_{κ} club, $j^{\prime \prime} C=C$ needs to be a condition in $\mathrm{NM}_{j(\kappa)}$, but $C \notin M$;
- Even if C were added to M, κ is regular so $C \notin \mathrm{NM}_{j(\kappa)}$;
- Even if κ were singularised, Col_{κ} would be changed by doing this. Define a new forcing \mathbb{Q}_{κ} which can modify M to solve these issues:
- Adds an NM_{κ} club;
- Singularises κ; and
- Does "magic" to make Col $_{\kappa}$ work.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

Let \mathbb{P}_{κ} be an iteration of \mathbb{Q}_{γ} for $\gamma<\kappa$, and let $\mathbb{P}=\mathbb{P}_{\kappa} \star \mathrm{NM}_{\kappa} \star \mathrm{Col}_{\kappa}$.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

Let \mathbb{P}_{κ} be an iteration of \mathbb{Q}_{γ} for $\gamma<\kappa$, and let $\mathbb{P}=\mathbb{P}_{\kappa} \star \mathrm{NM}_{\kappa} \star$ Col $_{\kappa}$. \mathbb{P} does not contain \mathbb{Q}_{κ} so κ is regular in $V[G]$.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

Let \mathbb{P}_{κ} be an iteration of \mathbb{Q}_{γ} for $\gamma<\kappa$, and let $\mathbb{P}=\mathbb{P}_{\kappa} \star \mathrm{NM}_{\kappa} \star$ Col $_{\kappa}$. \mathbb{P} does not contain \mathbb{Q}_{κ} so κ is regular in $V[G]$. $j(\mathbb{P})=\mathbb{P}_{j(\kappa)} \star \mathrm{NM}_{j(\kappa)} \star \operatorname{Col}_{j(\kappa)}$ contains \mathbb{Q}_{κ}, so for any j we can define $H \subset j(\mathbb{P})$ generic such that $j^{\prime \prime} G \subset H$.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

Let \mathbb{P}_{κ} be an iteration of \mathbb{Q}_{γ} for $\gamma<\kappa$, and let $\mathbb{P}=\mathbb{P}_{\kappa} \star \mathrm{NM}_{\kappa} \star \mathrm{Col}_{\kappa}$. \mathbb{P} does not contain \mathbb{Q}_{κ} so κ is regular in $V[G]$. $j(\mathbb{P})=\mathbb{P}_{j(\kappa)} \star \mathrm{NM}_{j(\kappa)} \star \operatorname{Col}_{j(\kappa)}$ contains \mathbb{Q}_{κ}, so for any j we can define $H \subset j(\mathbb{P})$ generic such that $j^{\prime \prime} G \subset H$.
$j(\mathbb{P})$ does not contain any nontrivial \mathbb{Q}_{γ} for $\kappa<\gamma<\nu$.

$\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$

Let \mathbb{P}_{κ} be an iteration of \mathbb{Q}_{γ} for $\gamma<\kappa$, and let $\mathbb{P}=\mathbb{P}_{\kappa} \star \mathrm{NM}_{\kappa} \star$ Col $_{\kappa}$. \mathbb{P} does not contain \mathbb{Q}_{κ} so κ is regular in $V[G]$. $j(\mathbb{P})=\mathbb{P}_{j(\kappa)} \star \mathrm{NM}_{j(\kappa)} \star \operatorname{Col}_{j(\kappa)}$ contains \mathbb{Q}_{κ}, so for any j we can define $H \subset j(\mathbb{P})$ generic such that $j^{\prime \prime} G \subset H$.
$j(\mathbb{P})$ does not contain any nontrivial \mathbb{Q}_{γ} for $\kappa<\gamma<\nu$.
So $\operatorname{LST}\left(I, Q^{\alpha}\right) \leq \kappa$.

Open Problems

Open Problems

- Can $\operatorname{LST}\left(I, Q^{\alpha}\right)$ be an element of $\mathrm{Reg}_{>\alpha}$?

Open Problems

- Can $\operatorname{LST}\left(I, Q^{\alpha}\right)$ be an element of $\operatorname{Reg}_{>\alpha}$? Apparently, yes! (H.T., Osinski, last week)

Open Problems

- Can $\operatorname{LST}\left(I, Q^{\alpha}\right)$ be an element of $\operatorname{Reg}_{>\alpha}$? Apparently, yes! (H.T., Osinski, last week)
- Can we find a universe in which the LST number is singular?

Open Problems

- Can $\operatorname{LST}\left(I, Q^{\alpha}\right)$ be an element of $\mathrm{Reg}_{>\alpha}$? Apparently, yes! (H.T., Osinski, last week)
- Can we find a universe in which the LST number is singular?
- Can we prove the theorem without assuming that κ is the largest inaccessible?

Open Problems

- Can $\operatorname{LST}\left(I, Q^{\alpha}\right)$ be an element of $\operatorname{Reg}_{>\alpha}$? Apparently, yes! (H.T., Osinski, last week)
- Can we find a universe in which the LST number is singular?
- Can we prove the theorem without assuming that κ is the largest inaccessible?

Thank you for listening!

