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Strong Measure Zero Sets

Definition (Borel 1919)

A set X ⊆ 2ω is called strong measure zero iff for all f ∈ ωω there
exists a sequence ⟨ηn : n ∈ ω⟩ such that ∀n : ηn ∈ 2f (n) and
X ⊆

⋃
n∈ω[ηn].

Observation

The set SN of strong measure zero sets is a countably closed ideal
which is contained in the ideal of Lebesgue measure zero sets and
contains no perfect sets.
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Strong Measure Zero Sets

Definition (Borel 1919)

A set X ⊆ 2ω is called strong measure zero iff for all f ∈ ωω there
exists a sequence ⟨ηn : n ∈ ω⟩ such that ∀n : ηn ∈ 2f (n) and
X ⊆

⋃
n∈ω[ηn].

Borel Conjecture (BC)

Every strong measure zero set is countable.
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Consistency of BC

CON(¬BC) was shown by Sierpiński (Sierpiński 1928) - any
Luzin set is strong measure zero

In fact, b = ℵ1 implies ¬BC (Goldstern, Judah, and Shelah
1993)

Theorem (Laver 1976)

BC holds in the Laver model (countable support iteration of Laver
forcing of length ω2).
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Strong Measure Zero Sets, Again

Blanket assumption: κ<κ = κ.

Definition (Halko 1996)

A set X ⊆ 2κ is called strong measure zero iff for all f ∈ κκ there
exists a sequence ⟨ηi : i < κ⟩ such that ∀i : ηi ∈ 2f (i) and
X ⊆

⋃
i<κ[ηi ].

Observation

The set SN of strong measure zero sets is a <κ+-closed ideal
containing all singletons.
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Strong Measure Zero Sets, Again

Blanket assumption: κ<κ = κ.

Definition (Halko 1996)

A set X ⊆ 2κ is called strong measure zero iff for all f ∈ κκ there
exists a sequence ⟨ηi : i < κ⟩ such that ∀i : ηi ∈ 2f (i) and
X ⊆

⋃
i<κ[ηi ].

BC(κ)

Every strong measure zero subset of 2κ has size κ.
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Consistency of BC(κ)

We again have that dκ = κ+ implies ¬BC(κ)(Halko and
Shelah 2001)

What about CON(BC(κ)?
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Consistency of BC(κ)

Theorem (Halko and Shelah 2001)

Assume κ = µ+. Then the following are equivalent:

A ⊆ 2κ is strong measure zero

For every X ∈ [κ]κ, the family (F̄ ↾ X )′′A is not dominating in
κX , where (F̄ ↾ X )(a) := ⟨Fi (a ↾ i) : i ∈ X ⟩ and Fi : 2

i → |2i |
are bijections

Corollary (Halko and Shelah 2001)

ZFC ⊢ ¬BC(κ) for successor κ.

Proof.

By the above theorem we have [2κ]<dκ ⊆ SN . For dκ = κ+ we
already know that ¬BC(κ) follows.

Nick Chapman Strong Measure Zero Sets in the Higher Cantor Space



The Classical Case
Strong Measure Zero at κ

A Model of SN = [2κ]≤κ+

References

Consistency of BC(κ)

Theorem (Halko and Shelah 2001)

Assume κ = µ+. Then the following are equivalent:

A ⊆ 2κ is strong measure zero

For every X ∈ [κ]κ, the family (F̄ ↾ X )′′A is not dominating in
κX , where (F̄ ↾ X )(a) := ⟨Fi (a ↾ i) : i ∈ X ⟩ and Fi : 2

i → |2i |
are bijections

Note that for κ inaccessible the theorem fails for 2κ.

Open Problem

Is BC(κ) consistent?
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What About a Laver Iteration?

Definition

A <κ-closed tree T ⊆ κ<κ is a κ-Laver tree iff | succT (η)| = κ for
every node η ∈ T above the stem.

Theorem (Khomskii, Koelbing, Laguzzi, and Wohofsky 2023)

Let P be a forcing notion consisting of κ-Laver trees which is closed
under the operation T 7→ T ↾ η := {ν ∈ T : ν ⊆ η ∨ η ⊆ ν}.
Then P adds a Cohen κ-real.
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What About a Laver Iteration?

Observation (κ inaccessible)

A κ++-c.c. forcing iteration of length κ++ that cofinally adds
Cohen κ-reals will make any set appearing in an intermediate
model strong measure zero.
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What About a Laver Iteration?

Open Problem

Is there a <κ-closed (or even <κ-distributive) forcing notion
adding a dominating κ-real but no Cohen κ-real?

The results of Khomskii, Koelbing, Laguzzi, and Wohofsky 2023
already exclude many natural candidates!
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A Related Problem

On ω, Corazza (Corazza 1989) was able to force

c = ℵ2 ∧ SN = [2ω]<c

by using a result of Miller (Miller 1983) to construct a model of
“Every set of reals of size continuum can be mapped uniformly

continuously onto [0, 1]”.
We follow Corazza’s approach.
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The Forcing

Definition

Let the forcing PTf for f ∈ κκ consist of all <κ-closed trees
p ⊆ κ<κ such that

1 ∀η ∈ p ∀i ∈ dom(η) : η(i) < f (i)

2 ∀η ∈ p : | succp(η)| = 1 ∨ succp(η) = {η⌢j : j < f (dom η)}
3 Whenever b ∈ [p] is a (cofinal) branch of p, then

{i : b ↾ i is a splitting node of p}

is a club in κ.
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The Forcing

Definition

Let (P,≤P) be a forcing notion and (≤i )i<κ be a sequence of
reflexive and transitive binary relations on P such that
(≤i ) ⊆ (≤j) ⊆ (≤P) for j < i . Then

1 (pj)j<δ is a fusion sequence of length δ ≤ κ iff
∀j < k < δ : pk ≤j pj .

2 P has Property B iff

(P,≤P) is <κ-closed.
Whenever (pj)j<δ is a fusion sequence in P, then there exists a
fusion limit q with ∀j < δ : q ≤j pj .
If A is a maximal antichain, p ∈ P and i < κ, then there exists
a q ≤i p such that A↾q := {r ∈ A : r ∥ q} has size <κ.
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The Forcing

Lemma

For every f ∈ κκ the forcing PTf is <κ-closed and satisfies
Property B with

q ≤PTf
p ⇐⇒ ∀j ≤ i : splitj(p) = splitj(q).

In particular, it is κκ-bounding.
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The Model

Assume V |= GCH and let ⟨Pα, Q̇β : α ≤ κ++, β < κ++⟩ be a
≤κ-supported forcing iteration with

⊩Pα Q̇α = PTfα

where each f ∈ κκ ∩ V appears cofinally. For technical reasons we
require fα ≡ 2 for α = 0 or cf α = κ+.

Theorem

Pα is <κ-closed, κ++-c.c. and satisfies an iteration version of
Property B.
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Easy Inclusion

Theorem

V P |= [2κ]≤κ+ ⊆ SN .

Proof Sketch.

In the extension, let X ∈ [2κ]≤κ+
and f ∈ κκ. By the κ++-c.c.,

they both already appear at a stage α < κ++. Find an h ∈ κκ ∩ V
with f ≤ h and a β > α such that fβ(i) = |2h(i)|. By a density
argument, the β-th generic real will encode an h-cover of X .
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SN ⊆ [2κ]≤κ+

Lemma (Key Lemma)

Let p ∈ P force τ̇ ∈ 2κ and τ̇ /∈ V . Then there exists a q ≤ p and
a uniformly continuous function f : 2κ → [q(0)] in V such that

q ⊩ f (τ̇) = ṡ0,

where ṡ0 denotes the first Sacks real (recall that f0 ≡ 2).

Lemma

Let p ∈ P be a condition. Then there exists a uniformly continuous
g : [p(0)] → 2κ and for each x ∈ 2κ ∩ V a condition qx ≤ p such
that

qx ⊩ x̌ = g(ṡ0).
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Theorem

In V P, every set X ∈ [2κ]κ
++

can be uniformly continuously
mapped onto 2κ.

Being strong measure zero is preserved by uniformly continuous
functions, therefore we are done.
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Stationary Strong Measure Zero

Observation

X ⊆ 2κ is strong measure zero iff for all f ∈ κκ there exists an
(ηi )i<κ such that ∀i < κ : ηi ∈ 2f (i) and for each x ∈ X

|{i < κ : x ∈ [ηi ]}| = κ.

Definition (Halko 1996)

X ⊆ 2κ is stationary strong measure zero iff for all f ∈ κκ there
exists an (ηi )i<κ such that ∀i < κ : ηi ∈ 2f (i) and for each x ∈ X

{i < κ : x ∈ [ηi ]}

is stationary.
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Stationary Strong Measure Zero

Theorem

In the Corazza-type model V P, every strong measure zero set is
stationary strong measure zero. However, under |2κ| = κ+, there
exists a strong measure zero set that is not stationary strong
measure zero.
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