$\begin{array}{l} \text{The Classical Case} \\ \text{Strong Measure Zero at } \kappa \\ \text{A Model of } \mathcal{SN} = [2^{\kappa}]^{\leq \kappa^+} \\ \text{References} \end{array}$

Strong Measure Zero Sets in the Higher Cantor Space

Nick Chapman

joint work with Johannes Schürz

Seventh Workshop on Generalised Baire Spaces February 2024

< ロ > < 同 > < 三 > < 三

Table of Contents

→ < ∃ →</p>

 $\begin{array}{l} \text{The Classical Case} \\ \text{Strong Measure Zero at }_{\mathcal{K}} \\ \text{A Model of } \mathcal{SN} = [2^{\mathcal{K}}]^{\leq \mathcal{K}^+} \\ \text{References} \end{array}$

Strong Measure Zero Sets

Definition (Borel 1919)

A set $X \subseteq 2^{\omega}$ is called *strong measure zero* iff for all $f \in \omega^{\omega}$ there exists a sequence $\langle \eta_n : n \in \omega \rangle$ such that $\forall n : \eta_n \in 2^{f(n)}$ and $X \subseteq \bigcup_{n \in \omega} [\eta_n]$.

Observation

The set SN of strong measure zero sets is a countably closed ideal which is contained in the ideal of Lebesgue measure zero sets and contains no perfect sets.

- 4 同 1 4 三 1 4 三 1

 $\begin{array}{l} \textbf{The Classical Case} \\ \text{Strong Measure Zero at }_{\mathcal{K}} \\ \text{A Model of } \mathcal{SN} = [2^{\mathcal{K}}]^{\leq_{\mathcal{K}}+} \\ \text{References} \end{array}$

Strong Measure Zero Sets

Definition (Borel 1919)

A set $X \subseteq 2^{\omega}$ is called *strong measure zero* iff for all $f \in \omega^{\omega}$ there exists a sequence $\langle \eta_n : n \in \omega \rangle$ such that $\forall n : \eta_n \in 2^{f(n)}$ and $X \subseteq \bigcup_{n \in \omega} [\eta_n]$.

Borel Conjecture (BC)

Every strong measure zero set is countable.

(4 同) 4 ヨ) 4 ヨ)

 $\begin{array}{l} \textbf{The Classical Case} \\ \text{Strong Measure Zero at }_{\mathcal{K}} \\ \text{A Model of } \mathcal{SN} = [2^{\mathcal{K}}]^{\leq_{\mathcal{K}}+} \\ \text{References} \end{array}$

Consistency of BC

- CON(¬BC) was shown by Sierpiński (Sierpiński 1928) any Luzin set is strong measure zero
- In fact, $\mathfrak{b}=\aleph_1$ implies $\neg\mathsf{BC}$ (Goldstern, Judah, and Shelah 1993)

Theorem (Laver 1976)

BC holds in the Laver model (countable support iteration of Laver forcing of length ω_2).

< ロ > < 同 > < 三 > < 三 >

 $\begin{array}{l} \text{The Classical Case} \\ \textbf{Strong Measure Zero at } \kappa \\ \text{A Model of } \mathcal{SN} = [2^{\kappa}]^{\leq \kappa^+} \\ \text{References} \end{array}$

Strong Measure Zero Sets, Again

Blanket assumption: $\kappa^{<\kappa} = \kappa$.

Definition (Halko 1996)

A set $X \subseteq 2^{\kappa}$ is called *strong measure zero* iff for all $f \in \kappa^{\kappa}$ there exists a sequence $\langle \eta_i : i < \kappa \rangle$ such that $\forall i : \eta_i \in 2^{f(i)}$ and $X \subseteq \bigcup_{i < \kappa} [\eta_i]$.

Observation

The set SN of strong measure zero sets is a $<\kappa^+$ -closed ideal containing all singletons.

-

Strong Measure Zero Sets, Again

Blanket assumption: $\kappa^{<\kappa} = \kappa$.

Definition (Halko 1996)

A set $X \subseteq 2^{\kappa}$ is called *strong measure zero* iff for all $f \in \kappa^{\kappa}$ there exists a sequence $\langle \eta_i : i < \kappa \rangle$ such that $\forall i : \eta_i \in 2^{f(i)}$ and $X \subseteq \bigcup_{i < \kappa} [\eta_i]$.

$BC(\kappa)$

Every strong measure zero subset of 2^{κ} has size κ .

< ロ > < 同 > < 三 > < 三 >

Consistency of $BC(\kappa)$

What about $CON(BC(\kappa))$?

< ロ > < 同 > < 三 > < 三 >

Consistency of $BC(\kappa)$

Theorem (Halko and Shelah 2001)

Assume $\kappa = \mu^+$. Then the following are equivalent:

- $A \subseteq 2^{\kappa}$ is strong measure zero
- For every $X \in [\kappa]^{\kappa}$, the family $(\bar{F} \upharpoonright X)''A$ is not dominating in κ^{X} , where $(\bar{F} \upharpoonright X)(a) := \langle F_{i}(a \upharpoonright i) : i \in X \rangle$ and $F_{i} : 2^{i} \rightarrow |2^{i}|$ are bijections

Corollary (Halko and Shelah 2001)

 $ZFC \vdash \neg BC(\kappa)$ for successor κ .

Proof.

By the above theorem we have $[2^{\kappa}]^{<\mathfrak{d}_{\kappa}} \subseteq S\mathcal{N}$. For $\mathfrak{d}_{\kappa} = \kappa^+$ we already know that $\neg BC(\kappa)$ follows.

Consistency of $BC(\kappa)$

Theorem (Halko and Shelah 2001)

Assume $\kappa = \mu^+$. Then the following are equivalent:

• $A \subseteq 2^{\kappa}$ is strong measure zero

• For every $X \in [\kappa]^{\kappa}$, the family $(\bar{F} \upharpoonright X)''A$ is not dominating in κ^{X} , where $(\bar{F} \upharpoonright X)(a) := \langle F_{i}(a \upharpoonright i) : i \in X \rangle$ and $F_{i} : 2^{i} \rightarrow |2^{i}|$ are bijections

Note that for κ inaccessible the theorem fails for 2^{κ} .

Open Problem

Is $BC(\kappa)$ consistent?

< ロ > < 同 > < 三 > < 三 >

What About a Laver Iteration?

Definition

A < κ -closed tree $T \subseteq \kappa^{<\kappa}$ is a κ -Laver tree iff $|\operatorname{succ}_T(\eta)| = \kappa$ for every node $\eta \in T$ above the stem.

Theorem (Khomskii, Koelbing, Laguzzi, and Wohofsky 2023)

Let \mathbb{P} be a forcing notion consisting of κ -Laver trees which is closed under the operation $T \mapsto T \upharpoonright \eta := \{\nu \in T : \nu \subseteq \eta \lor \eta \subseteq \nu\}$. Then \mathbb{P} adds a Cohen κ -real.

- 4 同 ト 4 ヨ ト 4 ヨ ト

What About a Laver Iteration?

Observation (κ inaccessible)

A κ^{++} -c.c. forcing iteration of length κ^{++} that cofinally adds Cohen κ -reals will make any set appearing in an intermediate model strong measure zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{l} \text{The Classical Case} \\ \textbf{Strong Measure Zero at } \kappa \\ \text{A Model of } \mathcal{SN} = [2^{\kappa}]^{\leq \kappa^+} \\ \text{References} \end{array}$

What About a Laver Iteration?

Open Problem

Is there a $<\kappa$ -closed (or even $<\kappa$ -distributive) forcing notion adding a dominating κ -real but no Cohen κ -real?

The results of Khomskii, Koelbing, Laguzzi, and Wohofsky 2023 already exclude many natural candidates!

・ 同 ト ・ ヨ ト ・ ヨ ト

A Related Problem

On ω , Corazza (Corazza 1989) was able to force

$$\mathfrak{c} = \aleph_2 \wedge \mathcal{SN} = [2^{\omega}]^{<\mathfrak{c}}$$

by using a result of Miller (Miller 1983) to construct a model of "Every set of reals of size continuum can be mapped uniformly continuously onto [0, 1]". We follow Corazza's approach.

The Forcing

Definition

Let the forcing PT_f for $f \in \kappa^{\kappa}$ consist of all $<\kappa$ -closed trees $p \subseteq \kappa^{<\kappa}$ such that

- $\forall \eta \in p: |\operatorname{succ}_{p}(\eta)| = 1 \lor \operatorname{succ}_{p}(\eta) = \{\eta^{\frown}j: j < f(\operatorname{dom} \eta)\}$
- Whenever $b \in [p]$ is a (cofinal) branch of p, then

 $\{i : b \mid i \text{ is a splitting node of } p\}$

is a club in κ .

3

The Forcing

Definition

Let $(\mathcal{P}, \leq_{\mathcal{P}})$ be a forcing notion and $(\leq_i)_{i < \kappa}$ be a sequence of reflexive and transitive binary relations on \mathcal{P} such that $(\leq_i) \subseteq (\leq_{\mathcal{P}})$ for j < i. Then

• $(p_j)_{j < \delta}$ is a fusion sequence of length $\delta \le \kappa$ iff $\forall j < k < \delta : p_k \le_j p_j$.

2 \mathcal{P} has *Property B* iff

- $(\mathcal{P}, \leq_{\mathcal{P}})$ is $<\kappa$ -closed.
- Whenever $(p_j)_{j < \delta}$ is a fusion sequence in \mathcal{P} , then there exists a *fusion limit* q with $\forall j < \delta : q \leq_j p_j$.
- If A is a maximal antichain, p ∈ P and i < κ, then there exists a q ≤_i p such that A↾q := {r ∈ A: r || q} has size <κ.

< ロ > < 同 > < 回 > < 回 >

The Forcing

Lemma

For every $f \in \kappa^\kappa$ the forcing PT_f is $<\!\kappa\text{-closed}$ and satisfies Property B with

$$q \leq_{PT_f} p \iff \forall j \leq i : \operatorname{split}_j(p) = \operatorname{split}_j(q).$$

In particular, it is κ^{κ} -bounding.

< ロ > < 同 > < 三 > < 三 >

The Classical Case Strong Measure Zero at $\overset{\circ}{F}$ A Model of $\mathcal{SN} = [2^{\kappa}]^{\leq \kappa^+}$ References

The Model

Assume $V \models GCH$ and let $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\beta} : \alpha \leq \kappa^{++}, \beta < \kappa^{++} \rangle$ be a $\leq \kappa$ -supported forcing iteration with

$$\Vdash_{\mathbb{P}_{\alpha}} \dot{\mathbb{Q}}_{\alpha} = PT_{f_{\alpha}}$$

where each $f \in \kappa^{\kappa} \cap V$ appears cofinally. For technical reasons we require $f_{\alpha} \equiv 2$ for $\alpha = 0$ or cf $\alpha = \kappa^+$.

Theorem

 \mathbb{P}_{α} is $<\kappa$ -closed, κ^{++} -c.c. and satisfies an iteration version of Property B.

イロト イポト イラト イラト

Easy Inclusion

Theorem

$$V^{\mathbb{P}} \models [2^{\kappa}]^{\leq \kappa^+} \subseteq \mathcal{SN}.$$

Proof Sketch.

In the extension, let $X \in [2^{\kappa}]^{\leq \kappa^+}$ and $f \in \kappa^{\kappa}$. By the κ^{++} -c.c., they both already appear at a stage $\alpha < \kappa^{++}$. Find an $h \in \kappa^{\kappa} \cap V$ with $f \leq h$ and a $\beta > \alpha$ such that $f_{\beta}(i) = |2^{h(i)}|$. By a density argument, the β -th generic real will encode an *h*-cover of *X*.

- 4 周 ト 4 戸 ト 4 戸 ト

$\mathcal{SN}\subseteq [2^{\kappa}]^{\leq\kappa^{+1}}$

Lemma (Key Lemma)

Let $p \in \mathbb{P}$ force $\dot{\tau} \in 2^{\kappa}$ and $\dot{\tau} \notin V$. Then there exists a $q \leq p$ and a uniformly continuous function $f : 2^{\kappa} \to [q(0)]$ in V such that

$$q \Vdash f(\dot{\tau}) = \dot{s}_0,$$

where \dot{s}_0 denotes the first Sacks real (recall that $f_0 \equiv 2$).

Lemma

Let $p \in \mathbb{P}$ be a condition. Then there exists a uniformly continuous $g : [p(0)] \to 2^{\kappa}$ and for each $x \in 2^{\kappa} \cap V$ a condition $q_x \leq p$ such that

$$q_{x} \Vdash \check{x} = g(\dot{s}_{0}).$$

<ロト < 同ト < ヨト < ヨト

Theorem

In $V^{\mathbb{P}}$, every set $X \in [2^{\kappa}]^{\kappa^{++}}$ can be uniformly continuously mapped onto 2^{κ} .

Being strong measure zero is preserved by uniformly continuous functions, therefore we are done.

Stationary Strong Measure Zero

Observation

 $X \subseteq 2^{\kappa}$ is strong measure zero iff for all $f \in \kappa^{\kappa}$ there exists an $(\eta_i)_{i < \kappa}$ such that $\forall i < \kappa : \eta_i \in 2^{f(i)}$ and for each $x \in X$

 $|\{i < \kappa : x \in [\eta_i]\}| = \kappa.$

Definition (Halko 1996)

 $X \subseteq 2^{\kappa}$ is *stationary* strong measure zero iff for all $f \in \kappa^{\kappa}$ there exists an $(\eta_i)_{i < \kappa}$ such that $\forall i < \kappa : \eta_i \in 2^{f(i)}$ and for each $x \in X$

$$\{i < \kappa : x \in [\eta_i]\}$$

is stationary.

< ロ > < 同 > < 回 > < 回 >

Stationary Strong Measure Zero

Theorem

In the Corazza-type model $V^{\mathbb{P}}$, every strong measure zero set is stationary strong measure zero. However, under $|2^{\kappa}| = \kappa^+$, there exists a strong measure zero set that is not stationary strong measure zero.

Bibliography

Émile Borel. "Sur la classification des ensembles de mesure nulle". In: [Bor19] Bull. Soc. Math. France 47 (1919), pp. 97–125. ISSN: 0037-9484. URL: http://www.numdam.org/item?id=BSMF_1919__47__97_0. [Cor89] Paul Corazza. "The generalized Borel conjecture and strongly proper orders". In: Trans. Amer. Math. Soc. 316.1 (1989), pp. 115-140. ISSN: 0002-9947, DOI: 10.2307/2001276, URL: https://doi.org/10.2307/2001276. [GJS93] Martin Goldstern, Haim Judah, and Saharon Shelah. "Strong measure zero sets without Cohen reals". In: J. Symbolic Logic 58.4 (1993), pp. 1323-1341. ISSN: 0022-4812. DOI: 10.2307/2275146. URL: https://doi.org/10.2307/2275146. [Hal96] Aapo Halko. "Negligible subsets of the generalized Baire space $\omega_1^{\omega_1}$ ". In: Ann. Acad. Sci. Fenn. Math. Diss. 107 (1996), p. 38. ISSN: 1239-6303. [HS01] Aapo Halko and Saharon Shelah. "On strong measure zero subsets of ^{*k*}2". In: *Fund. Math.* 170.3 (2001), pp. 219–229. ISSN: 0016-2736. DOI: 10.4064/fm170-3-1. URL: https://doi.org/10.4064/fm170-3-1. Yurii Khomskii, Marlene Koelbing, Giorgio Laguzzi, and [Kho+23] Wolfgang Wohofsky. "Laver trees in the generalized Baire space". English. In: Isr. J. Math. 255.2 (2023), pp. 599=620. #SN: 0021+2172. = $\begin{array}{l} \text{The Classical Case} \\ \text{Strong Measure Zero at } \kappa \\ \text{A Model of } \mathcal{SN} = [2^{\kappa}]^{\leq \kappa^+} \\ \text{References} \end{array}$

https://arxiv.org/abs/1908.10718

(日)