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The classical case:

A Borel space (X ,B) is a set X with a σ-algebra B on it such that
B is countably generated and separates points of X , or, equivalently,
B is generated by a metrizable second-countable topology on X .

A standard Borel space (X ,B) is a Borel space such that, equivalently:
it is Borel isomorphic to a Borel subset of the Baire space ωω , or
there is a Polish topology on X generating B.

The topology is not unique.

Thus, the Borel sets of a Borel space can be stratified in different Borel
hierarchies.
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Let κ be a cardinal of (uncountable) cofinality µ such that 2<κ = κ.

Definition
A κ+-Borel space (X ,B) is a set X with a κ+-algebra B on it such that
B is generated by a family of size ≤ κ and separates points of X .

Definition
A κ+-Borel space (X ,B) is standard if it is κ+-Borel isomorphic to a
κ+-Borel subset of the generalized Baire space κµ .
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Many candidates of “Polish-like” topologies:
G-Polish spaces,
Sph. complete G-Polish spaces,
SCκ-spaces with a metrizable-like condition,
fSCκ-spaces with a metrizable-like condition,
...

Theorem (A., Motto Ros, Schlicht/A., Motto Ros)

All above classes coincide up to κ+-Borel isomorphism.

Theorem (A., Motto Ros, Schlicht/A., Motto Ros)

The following are equivalent for a κ+-Borel space (X ,B):
(X ,B) is standard κ+-Borel,
B is generated by a fSCκ topology,
B is generated by a sph. complete G-Polish topology.
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Metrizable-like topologies

Many candidates of “metrizable-like” topologies:
µ-metrizable spaces,
NSδµ-spaces for some δ ≤ µ,
µ-uniformly based (µ, µ)-paracompact spaces,
...

µ-uniformly based + (µ, µ)-paracompact

NSµ
µ

NSω
µ

NS2
µ

µ-metrizable

C. Agostini (TU Wien) The κ+-Borel hierarchy & topology February 09, 2024 5 / 18



Metrizable-like topologies

Many candidates of “metrizable-like” topologies:
µ-metrizable spaces,
NSδµ-spaces for some δ ≤ µ,
µ-uniformly based (µ, µ)-paracompact spaces,
...

µ-uniformly based + (µ, µ)-paracompact

NSµ
µ

NSω
µ

NS2
µ

µ-metrizable

C. Agostini (TU Wien) The κ+-Borel hierarchy & topology February 09, 2024 5 / 18



Metrizable-like topologies

Many candidates of “metrizable-like” topologies:
µ-metrizable spaces,
NSδµ-spaces for some δ ≤ µ,
µ-uniformly based (µ, µ)-paracompact spaces,
...

µ-uniformly based + (µ, µ)-paracompact

NSµ
µ

NSω
µ

NS2
µ

µ-metrizable

C. Agostini (TU Wien) The κ+-Borel hierarchy & topology February 09, 2024 6 / 18



A family A of subsets of X is locally <γ-sized if every point of X has an
open neighborhood that intersect <γ-many elements of A.

A family of sets is called NSγδ if it is the union of δ-many locally <γ-sized
families.

We call X a NSγδ -space if it is (regular Hausdorff and) it has a base for the
topology that is a NSγδ -family.

Theorem (Bing-Nagata-Smirnov Metrization Theorem)
The following are equivalent:

1 X is metrizable
2 X is a NSωω-space.
3 X is a NS2

ω-space.

Remark: weight ≤ δ implies NS2
δ-space.
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X is (µ, µ)-paracompact if every open cover of X has a NSµµ-refinement.

The µ-uniform local base game: at every round α < µ, player I pick a
point xα ∈ X , and player II replies with an open set Vα containing xα.

I x0 x1 ... xγ ...
II V0 V1 ... Vγ ...

At the end of the game, player II wins if
⋂

α<µ Vα = ∅ or if {Vα | α < µ}
is a local base of a point x ∈ X , otherwise I wins.

X is µ-uniformly based if player II has a winning strategy.

Theorem (A., Motto Ros)
X is metrizable if and only if it is ((ω, ω)-)paracompact and ω-uniformly
based.

C. Agostini (TU Wien) The κ+-Borel hierarchy & topology February 09, 2024 8 / 18



X is (µ, µ)-paracompact if every open cover of X has a NSµµ-refinement.

The µ-uniform local base game: at every round α < µ, player I pick a
point xα ∈ X , and player II replies with an open set Vα containing xα.

I x0 x1 ... xγ ...
II V0 V1 ... Vγ ...

At the end of the game, player II wins if
⋂

α<µ Vα = ∅ or if {Vα | α < µ}
is a local base of a point x ∈ X , otherwise I wins.

X is µ-uniformly based if player II has a winning strategy.

Theorem (A., Motto Ros)
X is metrizable if and only if it is ((ω, ω)-)paracompact and ω-uniformly
based.

C. Agostini (TU Wien) The κ+-Borel hierarchy & topology February 09, 2024 8 / 18



X is (µ, µ)-paracompact if every open cover of X has a NSµµ-refinement.

The µ-uniform local base game: at every round α < µ, player I pick a
point xα ∈ X , and player II replies with an open set Vα containing xα.

I x0 x1 ... xγ ...
II V0 V1 ... Vγ ...

At the end of the game, player II wins if
⋂

α<µ Vα = ∅ or if {Vα | α < µ}
is a local base of a point x ∈ X , otherwise I wins.

X is µ-uniformly based if player II has a winning strategy.

Theorem (A., Motto Ros)
X is metrizable if and only if it is ((ω, ω)-)paracompact and ω-uniformly
based.

C. Agostini (TU Wien) The κ+-Borel hierarchy & topology February 09, 2024 8 / 18



Theorem (Folklore?)

Let X be a set and let B be a κ+-algebra on X . The following are
equivalent:

(X ,B) is a κ+-Borel space,
B is generated by a (regular Hausdorff) topology of weight ≤ κ,
B is generated by a metrizable-like topology of weight ≤ κ,
(X ,B) is κ+-Borel isomorphic to a subset of the generalized Baire
space κµ .

What does the κ+-Borel hierarchy generated by these topologies look like?
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All topological spaces are assumed to be Hausdorff and regular.

Let (X , τ) be a topological space and γ be a cardinal.

Definition
The γ-hierarchy is defined by recursion on α:

Σ0
1(X , τ, γ) = τ ;

Σ0
α(X , τ, γ) = {

⋃
A | A ⊆

⋃
1≤β<αΠ

0
β(X , τ, γ), |A| < γ};

Π0
α(X , τ, γ) = {X \ A | A ∈ Σ0

α(X , τ, γ)}.
We also set ∆0

α(X , τ, γ) = Σ0
α(X , τ, γ) ∩Π0

α(X , τ, γ).

We denote by Bor(X , τ, γ) the smallest γ-algebra of sets generated by τ .
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Definition
We say that the γ-hierarchy is increasing (above δ) if for all α < β
(resp., such that δ ≤ α) we have

Σ0
α(X , τ, γ) ∪Π0

α(X , τ, γ) ⊆ ∆0
β(X , τ, γ).

Remark: by definition,

Σ0
1(X , τ, γ) ⊆ Π0

2(X , τ, γ) ⊆ Σ0
3(X , τ, γ),

Π0
1(X , τ, γ) ⊆ Σ0

2(X , τ, γ) ⊆ Π0
3(X , τ, γ).

Thus, the γ-hierarchy is always increasing above 2, and it is increasing if
and only if Σ0

1(X , τ, γ) ⊆ Σ0
2(X , τ, γ).
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The κ+-hierarchy allows to stratify κ+-Borel sets in classes.

Remark: Bor(X , τ, κ+) =
⋃

α<κ+ Σ0
α(X , τ, κ+) =

⋃
α<κ+ Π0

α(X , τ, κ+).

Remark: If X is regular Hausdorff of weight ≤ κ, then τ ⊆ Σ0
2(X , τ, κ+).

Thus the κ+-hierarchy is (always) increasing.

When κ is singular, there is another way to stratify κ+-Borel sets.

Remark: Bor(X , τ, κ+) =
⋃

α<κ+ Σ0
α(X , τ, κ) =

⋃
α<κ+ Π0

α(X , τ, κ).

In general, having weight ≤ κ does not ensure τ ⊆ Σ0
2(X , τ, κ).

This is true however for NSωµ-spaces.

Question
Is the κ-hierarchy of any µ-uniformly based (µ, µ)-paracompact space
increasing?
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Thus, when κ is singular, we have two hierarchies (the κ+-hierarchy and
the κ-hierarchy), both of length κ+, stratifying κ+-Borel sets.

Theorem (A., Motto Ros, Pitton)

Let (X , τ) be a space (of weight ≤ κ) and α < κ+ be an infinite ordinal.
1 If α is even, then

Σ0
1+α(X , τ, κ) = Σ0

1+α
2
(X , τ, κ+),

Π0
1+α(X , τ, κ) = Π0

1+α
2
(X , τ, κ+).

2 If α is odd, then

Σ0
1+α(X , τ, κ) = Π0

1+α(X , τ, κ) = ∆0
1+α(X , τ, κ).

Furthermore, if (X , τ) is a NSωµ-space, the same is true for finite ordinals.
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We call a topological space µ-additive if every intersection of < µ-many
open sets is still open.

Let (X , τ) be a topological space. Then there is always a smallest
µ-additive topology τ ′ refining τ . Notice that

B̃ = {
⋂

A | A ⊆ τ, |A| < µ,
⋂

A =
⋂
A∈A

cl(A)}

is a family of τ -closed set generating τ ′. Thus, τ ′ ⊆ Σ0
2(X , τ, κ+).

Corollary
Let (X , τ) be a space and let τ ′ be the µ-additive refinement of τ . Then,
for every infinite ordinal α < κ+,

Σ0
α(X , τ, κ+) = Σ0

α(X , τ ′, κ+)
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In general, if (X , τ) is a paracompact space and τ ′ is the µ-additive
refinement of τ , then (X , τ ′) need not be paracompact.

Theorem (A., Motto Ros)
Let (X , τ) be a µ-uniformly based, (µ, µ)-paracompact space. Let τ ′ be
the µ-additive refinement of τ . Then (X , τ ′) is a paracompact.

Corollary
Let (X , τ) be a µ-uniformly based, (µ, µ)-paracompact space. Let τ ′ be
the µ-additive refinement of τ . Then (X , τ ′) is (a NSωµ-space)
homeomorphic to a subset of κµ .

Thus, it requires to change at most the first ω-many levels of the
κ-hierarchy to make it "nice".
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Let either γ = κ or γ = κ+.

Definition
We say that the γ-hierarchy is collapsing if for some α < κ+,

Σ0
α(X , τ, γ) = Π0

α(X , τ, γ) = ∆0
α(X , τ, γ) = Bor(X , τ, γ).

Remark: for a space of weight ≤ κ, the κ-hierarchy collapses if and only if
the κ+-hierarchy collapses.
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Proposition (A., Motto Ros, Pitton)

Let (X ,B) be a κ+-Borel space. Then for all topologies τ, τ ′ of weight ≤ κ
generating B we have that the κ+-hierarchy of (X , τ) collapses if and only
if the κ+-hierarchy of (X , τ ′) collapses.

Proof: if τ, τ ′ are two topologies of weight ≤ κ generating the same
κ+-Borel structure, then there is α < κ+ such that for all β > α

Σ0
β(X , τ, κ+) = Σ0

β(X , τ ′, κ+).

Corollary
Let (X , τ) be a space of weight ≤ κ with a κ+-Borel embedding
f : 2κ → X . Then, the κ+-hierarchy on (X , τ) does not collapse.
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